C'mon Billy, all the cool kids are doing it:
How to model the spread of epidemics
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“I don't really know what
I'm doing”

- Unnamed Academics



Why? What? How?



Why do we model epidemics?

Coronavirus disease :

Worldwide

Alltime «

All-time cases and deaths

Total cases Total deaths

628M 6.58M
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This is epidemic data
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The process of making inference
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beliefs, statistics and
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validate on
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An Epidemic Model
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Simulating an epidemic
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GSE Simulation

& Removal Event
’
™

Infection Event



GSE Simulation
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GSE Simulation

The News

Britain welcomes its 75th Prime Minister in as
many days!

Page 4: Someone died or something??
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Visualising an epidemic
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Visualising an epidemic
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Visualising an epidemic
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The Likelihood



Likelihood an Epidemic

- This set of Infection times and Removal times
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Likelihood an Epidemic

- This set of Infection times and Removal times
- (given the initial conditions of the epidemic. ..
- ...and our assumptions)
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Likelihood an Epidemic

- Base it on our simulation

10



Likelihood an Epidemic
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Likelihood an Epidemic

- Joint probabilities for each event of:

- type of the event
- waiting time for event to occur

10



Likelihood an Epidemic

- Parameterised by 5 and ~

10



Making Inference

e MLE
e ABC

e MCMC

n



Intuitive: What is MCMC

Fancy

Understandable

Empirical estimation of
the posterior distribution

Draw samples from the posterior to
estimate mean, variance, etc.

12



Intuitive: What is MCMC

Fancy Understandable

Accounts for uncertainty | Find the most likely parameters
through data augmenta- | across all possibilities for the miss-
tion ing data

12



Intuitive: What is MCMC

Fancy

Understandable

Use Metropolis-Hastings
steps

Fancy stats methodology to make
sampling possible"ith some caveats

12
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Results: Infection times known
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Results: Infection times unknown
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Results: Simulation and Projection
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Closing thoughts
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What next?

- Discrete time

- Households

- Exposed/latent states
- Asymptomatic diseases

- Heterogeneous pop.

- Meta populations

- Vectors and reservoirs
- Testing schemes



What next?

- Sophisticated MCMC schema and proposals



What next?

- Estimate: current infections, test efficacy, new
variants



What next?

- Predict: future deaths, hospital burdens, invention
effects



What next?

- Combining results with ensemble methodology
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Its not COVID, crazy!




You can contribute!

- Google search analytics data
- Air quality and traffic data



You can contribute!

- Simple shift and scale models
- Behavioural analysis



You can contribute!

- Dashboards and scientific communication
- Policy activism
- Economic analysis



Closing remarks

Thank you for listening!

e e

" L
- v
g s
% Yo e 9 €S

- linkedin.com/in/benjamensimon
- github.com/BenjamenSimon
- BenjamenSimon.github.io (Under construction)


https://www.linkedin.com/in/benjamensimon/
https://github.com/BenjamenSimon
https://BenjamenSimon.github.io/
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