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Abstract

Around 8% of babies in the UK are born prematurely [15]. Premature birth can lead to severe health
complications in both early life and adulthood [12]. Such complications are the leading cause of death in
children under 5 [21]. We aimed to create a generalised linear model to predict the probability that a high-
risk infant will be readmitted to the neonatal unit within 1 year after their initial discharge. We utilised
data on 1488 high-risk infants collected for a multi-centre study by Langley et al. (2002) [10]. Our model
was built using backwards elimination and multiple methods of interaction selection, with the Hosmer-
Lemeshow test and cross validation being the main metrics by which we judged its quality. We suggest
a model that could be used with some alteration to the sensitivity, to fit the needs of the hospital, but
recommend that further research be undertaken that considers more advanced model building techniques
and additional explanatory variables that are known to affect the probability of readmission in high risk
infants.

1. Introduction

Premature birth is defined as occurring before 37 weeks of pregnancy [12;15]. Incidence of pre-term
births is already high in the UK, with 8 in every 100 babies being born prematurely [15], with such figures
continuing to increase globally [21]. Pre-term babies may suffer from a large number of health problems,
the most common being jaundice and feeding problems [17] and the most serious being bleeding in the
brain [2;12]. They can also suffer from long-term issues that can affect their whole lives [12]. The shorter
the gestation period of the baby the greater the risk of these short and long term health issues [2]. It is
also known that pre-term babies are 1.5 to 3 times more likely to be readmitted to the hospital within
the first year of life than their full term counterparts [17].

During this study we wished to develop a generalised linear model to predict the probabilities of
readmission within 1 year after initial discharge for a set of high risk neonatal survivors , based on a
data collected by Langley et al. (2002) [10]. As previously mentioned there are large health risks caused
by premature birth, but there are also extreme costs associated with the care of high risk infants for
hospitals, and limited resources available [16]. We could not justify prioritising one over the other, so we
compromised to aim to create the most accurate model possible, and gave preferential treatment to those
variables that we had reason to believe would improve the predictive accuracy of the model.

1.1. The Langley CNS Study (2002) [10]. During this investigation we used data collected by Langley

et al. (2002) [10]. They investigated 2181 infants who had a birth weight less than or equal to 1500g or

who had received level I intensive care for at least 48 hours after birth [10]. Many infants, however,
had missing information, which reduced the data set to 1488 infants for our purposes. The Langley et
al. (2002) [10] study excluded multiple births (such as twins), infants who had died, and infants with

severe congenital abnormalities [10]. The study occurred over 32 centres across the UK, and was designed
to support previous small sample, single centre studies that claimed that with the use of Community
Neonatal Services (CNS) the initial length of stay of a high risk infant can be reduced with no subsequent
increase in readmission probabilities. In total there were 10 explanatory variables (covariates) for the
response variable readmission. Details of the variables considered are found in Table 1. Let it be noted
that in Langley et al. (2002) [10] length of stay is treated as a response variable. In our investigation
we decided to use length of stay as an additional explanatory variable for readmission, thus the model
created in this investigation is designed to be consulted at the initial discharge of the infant.

2. Methods: What is a Generalised Linear Model?

In a simple regression model, a 1 unit increase in one of the covariates, xm, leads to a βm change in
the response variable, where βm is the coefficient for the explanatory variable xm. This relationship does
not hold for generalised linear models, thus we employ them when the response variable does not change
linearly with the covariates. A GLM takes the form:
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Variable Description Levels (Coding) Level Description

re.ad Readmission (response variable) N/A No =0, Yes = 1
cns Was a CNS provided? cns0 No

cns1 Yes
size Size of Neonatal Unit (NNU) size0 Small

size1 Large
gest Gestation Period in Weeks gest1 < 26 weeks

gest2 26-29 weeks
gest3 30-32 weeks
gest4 33-36 weeks
gest5 > 36 weeks

bwt Birth Weight N/A N/A
emp.m Mother employed? emp.m0 No

emp.m1 Yes
emp.f Father/partner employed? emp.f0 No

emp.f1 Yes
edu Age (in years) Mother left full time education edu1 < 16 years

edu2 16-17 years
edu3 18-20 years
edu4 > 20 years

los Time until initial discharge in log(days) N/A N/A
sex Sex of Baby sex0 Female

sex1 Male
accom Parents own house? accom0 No

accom1 Yes

Table 1. All variables considered for the construction of a generalised linear model to predict the
probability of readmission for a high risk infant, their descriptions, and their levels.

ηi = β0 +
M∑
m=1

(
βm ∗ xm,i

)
+ (interaction terms), (1)

where,

• β0 is the intercept,
• βm is the coefficient of the explanatory variable xm,
• m is the index of the parameters, for m ∈ (1, . . . ,M),
• ηi is the linear predictor for xxxi, the observations for the ith infant,
• The mean of the response variable, pi = g−1(ηi),
• and g is known as a link function.

2.1. Assumptions of a GLM. A generalised linear model has a set of assumptions [14] that must be
satisfied for the model to be a valid GLM, however these assumptions are relaxed enough to encompass
a large range of models, while also being strict enough to provide unified methods of estimation and
inference. These assumptions are:

(i) The response variable: The response variable, Y , is one dimensional, indexed by i for i ∈
(1, . . . , N). The observations, y1, . . . , yN , of the response variable, Y , are all independent observa-
tions of a random variable.

(ii) The explanatory variables: The explanatory variables, X = (X1, ..., XM ), are also one-dimensional,
where M < N (otherwise we will have more variables than observations).

(iii) Exponential Family: The distribution of the response variable conditional on the values of the
explanatory variables, Y |xxx, is a member of the Exponential Family (see §2.2).

(iv) Link function: There exists a single linear predictor, ηi, which influences the distribution of Yi|xxxi,
where xm,i does not influence the distribution of Yi|xxxi if and only if βm = 0. The mean, pi, is
related to ηi through a link function g (see §2.3).

2.2. Exponential Family. A random variable, Y , is said to belong to the exponential family if its
probability density function can be expressed in the form [14]:
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f(Y |θ, φ) = exp

{
yθ − k(θ)

φ
+ c(y, φ)

}
, (2)

where θ is the canonical parameter, φ is the scale parameter, and k and c are specified functions such
that f integrates to 1. It is known that θ and φ are not unique.

As an example, we will show how the probability density function of Y ∼ Bernoulli(p) can be expressed
in the exponential family form:

f(Y |θ, φ) = py(1− p)1−y, (3)

becomes,

f(Y |θ, φ) = exp

{
y log

(
p

1− p

)
+ log(1− p)

}
(4)

where θ = log
(

p
1−p

)
, φ = 1, k(θ) = − log(1− p) = log(1 + eθ), and c(y, φ) = 0.

2.3. The Link Function. The link function [14], g, is a monotonic function which maps the range of the
mean, p, to the range of linear predictor, η. Thus any monotonic function that maps [0, 1] to R is a valid
link function for a binary response variable, such as Bernoulli. We will, however, focus our attention on
three common choices;

(1) The logit: g(p) = logit(p) = log( p
1−p). The canonical link of a Bernoulli random variable [14].

(2) The Probit: g(p) = Φ−1(p), where Φ is the cumulative distribution function of a N(0,1) distribu-
tion.

(3) The complementary log-log: g(p) = log{− log(1− p)}.
While all three of these link functions satisfy the relationship g(p) = η, they imply different relationships
between the explanatory variables. We choose the link function which best matches the relationships in
the data. When the link function is the logit, this is known as logistic regression, when the link function
is Probit, this is known as probit regression. The canonical link function [14], gc, is derived from the
exponential family form of a distribution and satisfies the relationship θ = gc(p) = η. The canonical link
is found by calculating [k′(θ)]−1.

2.4. Deviance and ANODE. The residual deviance of a GLM is defined as [14]:

D(β̂ββ) = 2{`(y, φ)− `(β̂ββ, φ)}, (5)

where,

• β̂ββ is the vector of coefficient estimates,
• y is the observed values of the response variable,
• `(y, φ) is the log-likelihood for ppp evaluated at y, with respect to the known scale parameter, φ,

• and `(β̂ββ, φ) is the log-likelihood for ppp evaluated at the fitted values, β̂ββ, with respect to the known
scale parameter, φ.

Thus the deviance of a model is a measure of the difference between the observed values of the response
variable and the fitted values of the response variable. This can also be used to compare whether two
nested models are significantly different. To do this we use an analysis of deviance (ANODE) [14], also
known as a likelihood ratio test.

Consider two models; GLMC is the complex model with t explanatory variables, XXXC , and GLMS is
the simple model with k < t explanatory variables, XXXS ∈XXXC . For analysis of deviance,

H0 : βββ = β̂ββS , vs. HA : βββ = β̂ββC ,

where βββ is the true coefficient values, and β̂ββC and β̂ββS are the coefficient estimates of the complex and
simple models respectively. Under the null hypothesis,

W = 2{`(β̂ββS , φ)} − `(β̂ββC , φ)} ∼ χ2
(t−k). (6)

Thus we can say, using a 5% significance level, that if the p-value for W is < 0.05, then there is a
significant difference between the models, and the simple model is not a valid reduction of the complex
model.
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3. Methods: Model Selection

The overall goal of this investigation is to build a generalised linear model based on the observed co-
variates that accurately predicts the probability of readmission for a high risk infant given their covariate
values. This model then also needs to generalise to the population of all pre-term babies well, not just
the data that the model is built upon. This raises two questions; how do we build such a model, and
how do we know if the model is good? We will begin by discussing the second question. Assume that
we have our final model and it takes the form:

ηi = β0 +
M∑
m=1

(
βm ∗ xm,i

)
+ (interaction terms), (7)

where β0 is the intercept, βm are the coefficients of the covariates xm, and the probability of read-
mission, pi = g−1(ηi), where g is known as a link function. Coefficient estimates, β0 and βm for

m ∈ (1, . . . ,M) are computed using iteratively re-weighted least squares [14].
How do we know if this is a good model, and how do we know if it is better than another model

we could consider? There are many factors that make up a good model; how well it fits the data that
estimate its covariates, how well it generalises to the population as a whole, and how complex it is.

The first thing we wish to do is test how well the model fits the data that estimates its coefficients. To
do this we use a goodness of fit test. In general there are many GoF tests that exist, but for a Bernoulli
response variable there is only one that we can use, the Hosmer-Lemeshow test (See §3.4). If the p-value
of the test is significant, tested at the 5% significance level, then we say that the model is a poor fit for
the data, it does not predict well. If it is non-significant then we say that the model fits the data well.

One method to test how well the model generalises to new data is by dividing our original data set into
k groups; (k− 1) of the groups are combined to create a training set used to fit the coefficient estimates
of the model, and the final group is used as a test set of unseen data to evaluate the accuracy of the
model for new data. This is repeated k times, each time using a different group as the test set, and the
results are averaged. This is known as cross validation [4].

The complexity of the model is defined by how many terms it has and what kind of terms they are.
For instance, a main effect term is less complex than an interaction term, and a two-way interaction
term is less complex than a three-way interaction term. However, a model with 2 main effect terms and
their interaction is less complex than a model that has 20 main effect terms but no interactions. When
building a model we want to find the most parsimonious model. This is the model with the least number
of terms possible to explain the greatest amount of information possible. There is a trade off between
the number of terms in the model and the amount of variance that is explained, a good model wants to
strike a balance between the two. Having too many terms, and overly complex terms, can usually lead to
over fitting, which means that while the model may predict the training data well, it will not generalise
to new data. Now that we understand what is considered a good generalised linear model, we can begin
to form one for a given set of data.

3.1. Pre-modelling checks. After exploring the data we wish to fit a generalised linear model for
the response variable, readmission. Our first step is to make an assumption about the distribution
the response variable given the observed values of the explanatory variables, Y |xxx. The conditional
distribution of Y is a member of the exponential family, with mean p and fixed (known) scale parameter
φ. In the context of our study the response variable is binary, taking a value of 1 if the baby is readmitted
to the neonatal unit within of year of their initial discharge, and 0 if not. Clearly the best choice is to
assume that Yi|xxxi ∼ Bernoulli(pi).

Under this assumption of a Bernoulli distribution, we now want to check for multicollinearity. Multi-
collinearity occurs when one of the explanatory variables can be expressed as a linear combination of one
or more of the other explanatory variables in the model [14]. In more precise terms, if multicollinearity is
not present then the design matrix has full rank, and we can assume that all the explanatory variables
are independent [14]. To test for multicollinearity we can calculate the (generalised) variance-inflation

factor [5] for each explanatory variable in the additive model. If for all covariates the (GVIF)
1
d is less

than 5, where d is the number of discrete levels of a variable (degrees of freedom), then we can state that
there is no instance of multicollinearity. The GVIF is the extension of the VIF for explanatory variables
with more than one coefficient (i.e. factors). For explanatory variables that only require 1 coefficient, the

GVIF and GVIF
1
d are equivalent to the VIF, and we take GVIF to the power of 1

d to make it comparible

for different levels of d [5].
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Next we consider whether a transformation of any of the continuous explanatory variables would lead
to a better fitting model. Since our response variable is binary, a plot may not help us to decide which
transformation of the variable is a better fit. Thus we decide to choose the form of the covariate that
fits the data best under a univariate model. This is evaluated using the Hosmer-Lemeshow test (see §3.4
for more details on the Hosmer-Lemeshow test).

3.2. Preliminary Model selection. Once we have completed the pre-modelling checks, we can begin
to build a model. The first step is to consider which explanatory variables will make up our additive
model. To do this we fit univariate models for each of our M explanatory variables of the form:

ηm = β0,m + βm ∗ xm, (8)

where β0 is the intercept, βm are the coefficients of the covariate xm, m ∈ (1, ...,M), and the probability
of readmission, pi = g−1(ηm,i), where g is known as a link function.

If the covariate in a univariate model is not statistically significant under a Z-test then we do not
include it in our initial investigation. For the Z-test;

H0 : β0 = 0, vs. HA : β0 = β,

where β0 is the true value of the coefficient and β is the coefficient estimate. Under the null hypothesis;

Z =
β

σβ
∼ Normal(0, 1), (9)

where σβ is the standard error of the coefficient estimate. Testing at the 100(1 − α)% significance
level, a non-significant p-value suggests the term does not affect the response variable. It is important
to note that while one level of an explanatory variable may be non-significant, others may be, and one
can not remove any levels without removing all levels for that explanatory variable. In this stage we use
a significance level of 25%, which is supported by literature [1;11].

We now create an initial additive model containing all the explanatory variables which were significant
in the univariate case, as well as any we believe to be of contextual importance. The additive model
takes the from:

ηi = β0 +
M∑
m=1

(
βm ∗ xm,i

)
, (10)

where β0 is the intercept, βm are the coefficients of the covariate xm, and the probability of readmission,
pi = g−1(ηi), where g is known as a link function.

Our goal, as stated above, is to attain the simplest model that contains the most information. Start-
ing from the additive model, we wish to remove terms that do not contribute a significant amount of
information to the model. We can do this using backwards elimination. At each step in backwards
elimination, we take our current model GLMC and create k simpler models by removing the kth term
in each, for k ∈ (1, ...,Mc), where Mc is the number of covariates in the current model. We then use
analysis of deviance to calculate whether each reduced model is valid by considering its p-value. We have
chosen to test at the 15% significance level. If all the reduced models have a p-value below 0.15 then we
can state that there are no further valid reductions of the current model. Otherwise, the reduced model
with the largest p-value is taken as the new current model, and the process is repeated. We can also use
our discretion to included any borderline significant covariates that we feel are contextually important,
despite them not being significant. At the end of each step we will also consider the percentage change
in each of the coefficients that are common to both the reduced and current models. If any coefficients
change by more than 20%, then we can assume that the removed covariate adjusted for one or more of
the other covariates, and thus decide to include it in the model, despite it not being significant. At the
end of the backwards elimination we will have attained a preliminary main effects model.

It is now worth checking that the continuous explanatory variables in our preliminary main effects
model have a linear relationship with g(response variable), where g is the link function. If the relationship
between the two is non-linear, we will need to apply other model building techniques such as including
higher-power terms, fractional polynomials and spline function [18;19].

3.3. Interactions. Interactions between two variables are valid when one variable changes at a different
rate depending on the value of another. For instance, the weight at birth for a male baby may be higher
on average for that of a female baby, thus there is an interaction between birth weight and gender. We
add interaction terms into our model in order to incorporate these relationships. For our modelling
process we will only look at two-way interactions, that is interactions between at most two covariates.
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There are many ways to add interactions into the model, we will consider two alternatives. The
first method we could use is reminiscent of backwards elimination. We can add every possible two-
way interaction term into the model, and as we did for the main effects, use backwards elimination to
reduce the model one term at time until all the terms were significant, this time testing at the 5% level.
This method is in line with what we have already done, however it has some drawbacks. Firstly, the
more terms that are in our preliminary main effects model the more interaction terms there are. For a
preliminary main effects model with 10 terms there will be 45 possible two-way interaction terms, which
will take a long time to run backwards selection on. This method also produces a model with lots more
terms than the alternative method that follows, and thus may not give the most parsimonious model.

The alternative is to consider the interaction terms on their own and only choose to include those that
make a significant contribution to the model. We create a model for each interaction of the form:

ηi = β0 +

M∑
m=1

(
βm ∗ xm,i

)
+ (two-way interaction term)m,k, (11)

where β0 is the intercept, βm are the coefficients of the covariate xm in the preliminary model, and the
probability of readmission, pi = g−1(ηi), where g is known as a link function. The interaction is between
the mth covariate and the kth covariate, where m < k and m, k ∈ (1, ...,M) where M is the number of
explanatory variables in the preliminary main effects model. The interaction term for the mth covariate
with the kth covariate is the same as the interaction term for the kth covariate with the mth covariate.

We then use analysis of deviance to test if the removal of the interaction term for each model is valid.
For all the models with significant p-values, tested at the 5% significance level, the interaction term is
added to the preliminary main effects model to create a preliminary final model. We also have the option
of not testing every single interaction if there are a large number, and using intuition and context to test
those that we believe may be important. This method has the advantage of potentially being quicker
(as we have the option of not considering all terms, and it will have no effect on our analysis of the other
terms if we do not), and the models that are created via this method usually contain less interaction terms
than the previous method. It has the disadvantage, however, that none of the additional information
gained by including each interaction term is accessed in regards to the other interaction terms.

In this investigation we will consider models built using both methods, and will test all possible
two-way interaction terms for both methods.

3.4. Model Diagnostics. We now have a preliminary final model of the form:

ηi = β0 +
M∑
m=1

(
βm ∗ xm,i

)
+ (significant two-way interaction terms), (12)

where β0 is the intercept, βm are the coefficients of the covariate xm in the preliminary model, and
the probability of readmission, pi = g−1(ηi), where g is known as a link function.

We wish to test how well this model fits our data, and whether there are any changes we can implement
to make it fit better. We start by considering how well the model fits the data, to do this we can use a
goodness of fit test. One goodness of fit test we can use is known as the Hosmer-Lemeshow test [6;7;8;9].
The Hosmer-Lemeshow test works by the following:

(1) The observations are put into ascending order based on their predicted probabilities for Y = 1.
(2) The ordered observations are then split into g approximately equal sized groups.
(3) For each group, the proportion of observations for which Y = 1 should be around the average

estimated probability for the group.
(4) The same is then done for the probabilities that Y = 0.
(5) The Pearson Goodness of Fit statistic is then calculated. Under the null hypothesis,

H =
1∑

k=0

g∑
l=1

(Ok,l − Ek,l)2

Ek,l
∼ χ2

(g−2), (13)

where Ok,l is the observed number of observations in group l with Y = k, and Ek,l is the expected
number of observations in group l with Y = k.

(6) A hypothesis test using H is then conducted, testing:

H0: The model fits the data, vs. HA: The model does not fit the data.

Testing at the 5% significance level, if the p-value is small then we can state that the model does not
fit the data well.
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4. Results

To build our model, we follow the systematic approach outlined in §3, while also aiming to maximise
model accuracy with the justifications discussed in §1.

4.1. Step 1: Pre-modelling checks. Since the response variable, Y , is binary, taking values 1 if a baby
was readmitted to the neonatal unit, and 0 if not, we make the assumption that Yi|xxxi ∼Bernoulli(pi), for
the observations xxxi of the explanatory variables. We will also start by using the canonical link function
for Bernoulli, the logit. We now wish to check for multicollinearity in the explanatory variables. After
calculating the generalised variance inflation factor for all the terms in an additive model which contains

all the explanatory variables, we see that the value of (GVIF)
1
d is less than 5 for all explanatory variables

and thus we can state that there is no strong evidence of multicollinearity in the data. As an example,

the value of (GVIF)
1
d for the covariate birth weight was 3.52, which was the largest value for any covariate

and is much less than 5.
Now we test if a transformation of any of the continuous explanatory variables would be more ap-

propriate and lead us to a better model for this data. Length of stay had already been transformed
to be log(length of stay) by Bowden & Whittaker (2005) [2], so we chose this transformation for our
model. The only other continuous explanatory variable in the model was birth weight. We considered
two univariate models, one fitted with birth weight and the other fitted with log(birth weight). Using
a Hosmer-Lemeshow test, the p-value for the fit of the model with birth weight was 0.000019 while the
p-value for log(birth weight) was 0.00085. While both clearly fit the data very well, there is stronger
evidence for the untransformed birth weight.

4.2. Step 2: Preliminary model selection. Given our set of explanatory variables and their chosen
transformations, we now wish to see which of them we want to include in our initial additive model. This
step is of much greater importance when the number of explanatory variables is in the magnitude of the
hundreds or thousands. Since we only have 10 explanatory variables it would not be impossible to include
them all in our initial additive model, however, we include this step for methodological completeness.

We first create a series of 10 univariate models, one for each explanatory variable. We then use a Z-test
to see if there is evidence to suggest that the response variable is unaffected by any of the explanatory
variables. We test at the 25% significance level and find that all levels of the explanatory variable
Education are strongly non-significant, except for the intercept, which is only just significant with a
p-value of 0.197. Given that most levels of Education are strongly non-significant (p-values > 0.64) and
the intercept is only just significant, we have chosen to leave it out of our initial additive model.

We can now create a an initial additive model. This model has the following form, with coefficient
estimates and coding key provided in Table 2:

ηi =β0 + β1 ∗ xcns1 + β2 ∗ xsize1 + β3 ∗ xgest2 + β4 ∗ xgest3 + β5 ∗ xgest4 + β6 ∗ xgest5
+ β7 ∗ xbwt + β8 ∗ xemp.m1 + β9 ∗ xemp.f1 + β10 ∗ xlos + β11 ∗ xsex1 + β12 ∗ xaccom1,

(14)

where the predicted probability of readmission pi = eηi
eηi+1 .

Coding Coef. Estimate Std. Error Coding Coef. Estimate Std. Error

Intercept -2.92 0.70 – – –
cns1 0.04 0.11 bwt 0.04 0.13
size1 0.17 0.12 emp.m1 -0.20 0.11
gest2 0.40 0.31 emp.f1 -0.44 0.19
gest3 0.13 0.33 los 0.75 0.12
gest4 0.44 0.37 sex1 0.27 0.11
gest5 0.54 0.46 accom1 -0.26 0.14

Table 2. The coefficient estimates and their standard errors for each of the terms in the additive
model. Descriptions of each term and the terms that make up the intercept can be found in Table 5
in §6. Appendix.

Now that we have an initial additive model, we can use backwards elimination to simplify the model
by removing terms that do not add a substantial amount of information. During this process we removed
the following terms: birth weight then cns. None of the terms were found to adjust for any of the others in
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the model, and all terms removed had analysis of deviance p-values � 0.15. We now have a preliminary
main effects model of the following form, with coefficient estimates and coding key provided in Table 3:

ηi =β0 + β1 ∗ xsize1 + β2 ∗ xgest2 + β3 ∗ xgest3 + β4 ∗ xgest4 + β5 ∗ xgest5
+ β6 ∗ xemp.m1 + β7 ∗ xemp.f1 + β8 ∗ xlos + β9 ∗ xsex1 + β10 ∗ xaccom1,

(15)

where the predicted probability of readmission pi = eηi
eηi+1 .

Coding Coef. Estimate Std. Error Coding Coef. Estimate Std. Error

Intercept -2.80 0.63
size1 0.17 0.12 emp.m1 -0.20 0.11
gest2 0.40 0.31 emp.f1 -0.44 0.19
gest3 0.13 0.33 los 0.74 0.11
gest4 0.45 0.36 sex1 0.28 0.11
gest5 0.59 0.39 accom1 -0.26 0.14

Table 3. The coefficient estimates and their standard errors for each of the terms in the preliminary
main effects model. Descriptions of each term and the terms that make up the intercept can be found
in Table 5 in §6. Appendix.

A visual inspection of length of stay plotted against the predicted probabilities shows a strong linear
relationship, so again we do not have to worry about transforming this variable.

4.3. Step 3: Interactions. As stated in §3.3 we will be considering two methods for including inter-
actions in our model. The first method is reminiscent of backwards elimination, in which we add all
possible 2-way interactions into the model and use analysis of deviance to reduce the model. We have
7 explanatory variables in our model meaning we have 21 possible two-way interactions to consider.
Iterating through the process of backwards elimination, we are left with 10 interactions, and a model
which we will call final model 1. We did not feel that there were any borderline significant terms that
should be included despite being non-significant. Since the form of the model is now quite unwieldy, with
33 terms, we will instead just list the interaction terms that were included: size:emp.f, size:los, size:sex,
size:accom, gest:emp.f, gest:los, gest:sex, gest:accom, emp.m:sex, and sex:accom.

The alternative method is to create a series of 21 models each with one interaction term. Using analysis
of deviance to compare each model to the preliminary main effects model, we find that the model with
the interaction term size:emp.f was the only one that could not be reduced to the preliminary main
effects model, testing at the 5% significance level. We add this interaction term into the preliminary
main effects model and call this final model 2.

We now wish to investigate whether there is evidence that one final model is better than the other.
Fortunately, in this case, the two models are nested, final model 2 is a simplification of final model 1,
so we can use analysis of deviance to test if final model 1 can be reduced to final model 2. Analysis of
deviance returns a p-value of 0.08463, suggesting that final model 2 is a valid reduction of final model 1.
On top this we also know that final model 2 is the far more parsimonious model, and it is worth noting
that some of the standard errors in final model 1 are anomalously large, and that almost all of its terms
are non-significant at the 5% level under a Z-test. If we also consider some of the interactions that are
included in final model 1, we can see that it suggests that the sex of the baby is related to whether the
parents own their home, the gestation period of the baby, and the employment status of the mother,
all of which seem very unlikely and would certainly lead to over fitting. For these reasons we take final
model 2 to be our final model. If there was more ambiguity between models, then we could take all final
models through to model diagnostics and choose the model that aligned most with our aims. Our final
model takes the following form, with parameter estimates and standard errors found in Table 4:

ηi =β0 + β1 ∗ xsize1 + β2 ∗ xgest2 + β3 ∗ xgest3 + β4 ∗ xgest4 + β5 ∗ xgest5 + β6 ∗ xemp.m1

+ β7 ∗ xemp.f1 + β8 ∗ xlos + β9 ∗ xsex1 + β10 ∗ xaccom1 + β11 ∗ (size1:emp.f1),
(16)

where the predicted probability of readmission pi = eηi
eηi+1 .
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Coding Coef. Estimate Std. Error Coding Coef. Estimate Std. Error

Intercept -3.18 0.66 emp.m1 -0.20 0.11
size1 0.79 0.34 emp.f1 -0.01 0.29
gest2 0.38 0.31 los 0.74 0.11
gest3 0.13 0.33 sex1 0.27 0.11
gest4 0.44 0.36 accom1 -0.27 0.14
gest5 0.59 0.39 size1:emp.f1 -0.70 0.36

Table 4. The coefficient estimates and their standard errors for each of the terms in the final model.
Descriptions of each term and the terms that make up the intercept can be found in Table 5 in §6.
Appendix.

4.4. Step 4: Model diagnostics. Now that we have our final model we need to test it to see how well
it fits the current data. We perform a Hosmer-Lemeshow test on final model which returns a p-value of
0.4239 suggesting strong evidence that the model fits the data, testing at the 5% significance level.

We can also use visual inspections of the model, such as those in Figure 1. From Figure 1a we can
see that the area under the ROC curve is 0.6654 which suggests quite a poor fit (close to 1 is a perfect
fit, close to 0.5 is equivalent to random assignment of response). Figure 1b shows us that the model
has quite poor accuracy, given that most observations are centred around a probability of readmission
of around 0.4 to 0.5. A model with better accuracy would be able to more definitively decide if a baby
was going to readmit, and so the majority of readmitted babies would have a high probability, and the
majority of non-readmitted babies would have a low probability.
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Figure 1. Visual inspections of the fit and accuracy of the final model: (A) A receiver operating
characteristic (ROC) curve showing the true positive rate (sensitivity) against the false positive rate
(1−specificity) at various threshold settings for the final model. Area under the curve (AUC) shows
an approximate accuracy of the final model. (B) A jittered plot of readmission (not readmitted = 1,
readmitted = 2) against predicted probability of readmission for the fitted final model.

Using cross validation, we calculate that the mean accuracy of the model for new data to be around
63%. The models mean true positive rate (sensitivity) is around 77.4%, however its mean false positive
rate (1−specificity) is around 55.3%. We have assumed that the scale parameter, φ, is 1 when building
all our models, we can test this by estimating the scale parameter for our final model by assuming a quasi
distribution. The estimated scale parameter is 1.01 (very close to 1) so we do not need to change our
assumption about the distribution used in the model. We can also test whether a different link function
will improve the accuracy of our model. Using a probit link function, we find that there is a negligible
increase in average accuracy and specificity, and a negligible decrease in sensitivity (all changes < 1%
in magnitude). Similarly, using a complementary log-log link function, we get a negligible increase in
accuracy and sensitivity, and a negligible decrease in specificity (all changes < 1% in magnitude). These
changes are so small that they could easily be due to random fluctuations in the data, thus we choose to
continue using the canonical link function, the logit.

Residual diagnostics were also investigated and revealed there may some issues with outliers, leverage
and influence. Details of residual diagnostics and the issues they illuminate are detailed elsewhere [4;22].
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4.5. Interpretation of the final model. Consider two babies, one male, one female. Both babies have
a large NNU, a gestation period greater than 36 weeks, both parents employed who own their house, and
a log(length of stay) value of 3.55. The predicted probability of readmission for the male is 48.4%, and
for the female is 42.19%.

Consider another two babies, both male. Both babies have the same attributes as the male baby in
the first example except for the log(length of stay) value. The first baby has a lower log(length of stay)
of 3.05 and has a probability of readmission of 39.46%, the other baby has a higher log(length of stay)
of 4.13 and has a probability of readmission of 58.85%.

5. Discussion

5.1. The model. As discussed in the §4.4 our model had a poor fit. The accuracy of the model overall
for new data was around 63%, meaning that a baby was only correctly predicted to be readmitted or
not 63% of the time. A model that only correctly predicts 50% of the time is considered equivalent to
random assignment of readmission status, thus our model is only slightly better than random. This is
very poor and we would ideally be aiming for at least an accuracy of around 80%-90%. On top of the
poor overall accuracy, its mean false positive rate (the proportion of babies who will not be readmitted
but are predicted to be) was around 55.3%. If all pre-term babies who are predicted to be readmitted are
provisioned for, this will put an extremely large and unnecessary strain on hospital resources. The one
redeeming factor of our model is that it wasn’t awful at predicting when a baby needed to be readmitted
to the neonatal unit, it got this correct 77.4% of the time. We tested a large number of models during
our exploratory investigation, and all models were poor in their accuracy.

This suggests a few potential flaws in either the model building process or the study design, or
both. A more thorough investigation, taking into consideration different techniques of variable selection,
higher level interaction terms, other transformations of continuous explanatory variables, and a stronger
consideration of the impact of outliers, leverage and influence may lead to a better fitting model. What
is more likely, however, is that there are more factors that affect the probability of a baby being born
prematurely than those considered in this investigation. For instance, there is evidence that race [3;20],
race of mother [20], having a schedualed out patient visit or home visit within 72 hours of discharge [3],
having a score ≥ 10 for “Neonatal Acute Physiology, Version II” [3], family income [13], birth facility [3] and
geographic location [13], breastfeeding [13;20], being a first born [20], labour and delivery complications [20],
being born by Cesarean section [13], and having a young mother [13] can strongly effect the probability
that a baby will be readmitted within the first year of life. Also note that jaundice, respitory illness, and
feeding problems are overwhelming reasons for readmission [3;13;17], and whether or not a hospital aims
to combat these problems before they occur is another variable to consider. For instance it was found
that home photo-therapy (a home treatment for jaundice) was the most important factor with respect

to rehospitalisation amoung babies with a gestation period greater than 34 weeks [3]. Not including
such explanatory variables in our model will mean a lot of the variance between individuals will remain
unexplained, and thus our model will have poor prediction power.

If this model is to be used in practice, which we would not recommend, the user could adjust it to fit
their circumstances. For instance, currently the accuracy of the model is evaluated on the assumption
that a baby with a predicted probability of ≥ 50% will be be readmitted, and those with a probability of
readmission < 50% will not be. If they adjust these levels, they could capture more (or less if they wish)
of the babies that will need to be readmitted and increase the true positive rate. This will, however, also
increase the false positive rate; there will be more babies that are predicted to be readmitted when they
won’t actually be readmitted. We can see from Figure 1a that a large increase in the false positive rate
(1−specificity) will lead to a much smaller increase in the true positive rate (sensitivity).

5.2. Strengths and limitations of the study. As previously mentioned, one limitation is the possi-
bility of unexplained variance due to missing explanatory variables in the data. A strength of the study,
however, is the large sample size of 1488 infants from a wide range of centres from all over the country.
It helps to reassure that the poor fit of the model isn’t due to small sample sizes, and that when an
accurate model is built in the future, that it may be able to generalise well to any hospital in the country.

5.3. Avenues for further research. We suggest that further research is undertaken that includes
other explanatory variables that are known to effect the probability of premature birth and readmission.
When building a generalised linear model with these new explanatory variables it may be potent to
consider additional model building techniques as detailed previously.
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6. Appendix

6.1. R code. The R code that was used to explore the data and run statistical analysis is detailed below.

1 #################

2 #Preamble

3 #################
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http://www.who.int/mediacentre/factsheets/fs363/en/
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Variable Description Levels (Coding) Level Description Intercept?

re.ad Readmission (response variable) N/A No =0, Yes = 1 -
CNS Was a CNS provided? cns0 No YES

cns1 Yes -
size Size of NNU size0 Small YES

size1 Large -
gest Gestation Period in Weeks gest1 < 26 weeks YES

gest2 26-29 weeks -
gest3 30-32 weeks -
gest4 33-36 weeks -
gest5 > 36 weeks -

bwt Birth Weight N/A N/A -
emp.m Mother employed? emp.m0 No YES

emp.m1 Yes -
emp.f Father/partner employed? emp.f0 No YES

emp.f1 Yes -
los Time until initial discharge in days N/A N/A -
sex Sex of Baby sex0 Female YES

sex1 Male -
accom Parents own house? accom0 No YES

accom1 Yes -

Table 5. The explanatory variables contained in the initial additive model (of which a subset were
present in all subsequent models), their descriptions, and the levels of each that were incorporated
into the intercept.

4

5 l i b r a r y ( ” dplyr ” )

6 l i b r a r y ( ” ggp lot2 ” )

7 l i b r a r y ( ” car ” )

8 l i b r a r y ( ” ca r e t ” )

9 l i b r a r y ( ” ResourceSe l e c t i on ” )

10 l i b r a r y ( ”Deducer” )

11

12 ########################

13 # Model F i t t i n g Checks

14 ########################

15

16 ##### Test ing f o r Mu l t i c o l l i n e a r i t y #####

17

18 v i f ( add i t i v e . model )

19 # Since a l l the GVIF va lues are l e s s then 5 we say there c o l l i n e a r i t y i s not an i s s u e .

20

21 ##### Test ing bwt vs . l og (bwt ) #####

22

23 un i va r i ab l e . bwt <− glm ( re . ad˜bwt , fami ly = binomial ( l i n k = ” l o g i t ” ) )

24

25 hoslem . t e s t ( un i v a r i ab l e . bwt$y , f i t t e d ( un i v a r i ab l e . bwt ) )

26

27 un i va r i ab l e . l og . bwt <− glm ( re . ad˜ log (bwt ) , f ami ly = binomial ( l i n k = ” l o g i t ” ) )

28

29 hoslem . t e s t ( un i v a r i ab l e . l og . bwt$y , f i t t e d ( un i v a r i ab l e . l og . bwt ) )

30

31

32 ##################################

33 # Step 1 : Univar ia te Model l ing

34 ##################################

35

36
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37 un i va r i ab l e . cns <− glm ( re . ad˜cns , f ami ly = binomial ( l i n k = ” l o g i t ” ) )

38 summary( un i va r i ab l e . cns )

39

40 un i va r i ab l e . s i z e <− glm ( re . ad˜ s i z e , f ami ly = binomial ( l i n k = ” l o g i t ” ) )

41 summary( un i va r i ab l e . s i z e )

42

43 un i va r i ab l e . g e s t <− glm ( re . ad˜ gest , f ami ly = binomial ( l i n k = ” l o g i t ” ) )

44 summary( un i va r i ab l e . g e s t )

45

46 un i va r i ab l e . bwt <− glm ( re . ad˜bwt , fami ly = binomial ( l i n k = ” l o g i t ” ) )

47 summary( un i va r i ab l e . bwt )

48

49 un i va r i ab l e . emp .m <− glm ( re . ad˜emp .m, fami ly = binomial ( l i n k = ” l o g i t ” ) )

50 summary( un i va r i ab l e . emp .m)

51

52 un i va r i ab l e . emp . f <− glm ( re . ad˜emp . f , f ami ly = binomial ( l i n k = ” l o g i t ” ) )

53 summary( un i va r i ab l e . emp . f )

54

55 un i va r i ab l e . edu <− glm ( re . ad˜edu , fami ly = binomial ( l i n k = ” l o g i t ” ) )

56 summary( un i va r i ab l e . edu )

57

58 un i va r i ab l e . l o s <− glm ( re . ad˜ los , f ami ly = binomial ( l i n k = ” l o g i t ” ) )

59 summary( un i va r i ab l e . l o s )

60

61 un i va r i ab l e . sex <− glm ( re . ad˜ sex , fami ly = binomial ( l i n k = ” l o g i t ” ) )

62 summary( un i va r i ab l e . sex )

63

64 un i va r i ab l e . accom <− glm ( re . ad˜accom , fami ly = binomial ( l i n k = ” l o g i t ” ) )

65 summary( un i va r i ab l e . accom)

66

67 # Thus we w i l l l e ave out edu as a l l i t s l e v e l s have p−va lue s >0.25

68

69 ##################################

70 # Step 2 : Mu l t i va r i a t e Model l ing

71 ##################################

72

73 ##### Round 1 ######

74

75 drop1 ( add i t i v e . model , t e s t=”Chisq” )

76

77 # Largest p−value i s 0 .83360 which means edu does not s i g n i f i c a n t l y add to the model

78

79 model . minus . edu <− glm ( re . ad˜ cns+s i z e+ge s t+bwt+emp .m+emp . f+l o s+sex+accom , fami ly =

binomial ( l i n k = ” l o g i t ” ) )

80

81 anova ( add i t i v e . model , model . minus . edu , t e s t=”Chisq” )

82 # There i s no s i g n i f i c a n t d i f f e r e n c e in the models , so i t i s a va l i d reduct ion .

83

84 # This ag r ee s with our un i va r i a t e i n v e s t i g a t i o n

85

86 round ( abs ( ( c o e f (model . minus . edu )−co e f ( add i t i v e . model ) [ − (11 :13) ] )

87 / co e f ( add i t i v e . model ) [ − (11 :13) ] ) , 3) ∗100
88 # None o f the c o e f f i c i e n t e s t imate s change by more than 20% so educat ion i s not an

important adjustment f o r the e f f e c t o f other v a r i a b l e s

89

90 # and so on . . .

91

92 ##### Round 4 ######

93

94 drop1 (model . minus . edu . bwt . cns , t e s t=”Chisq” )

95
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96 # Largest p−value i s 0 .14911 which means s i z e does s i g n i f i c a n t l y add to the model at the

15% s i g . l e v e l

97

98 # We have now obtained a pre l im inary main e f f e c t s model .

99

100 pre l im . main . e f f e c t s . model <− glm ( re . ad˜ s i z e+ge s t+emp .m+emp . f+l o s+sex+accom , fami ly =

binomial ( l i n k = ” l o g i t ” ) )

101

102 anova ( add i t i v e . model , pre l im . main . e f f e c t s . model , t e s t=”Chisq” )

103

104 # Not s i g n i f i c a n t l y d i f f e r e n t from the add i t i v e model so i s a va l i d reduct ion .

105

106

107 ##################################

108 # Step 3 : L in ea r i t y Assumptions

109 ##################################

110

111 # In the step , cont inuous v a r i a b l e s are checked f o r t h e i r l i n e a r i t y in r e l a t i o n to the

l o g i t o f the outcome .

112 # Our cont inuous v a r i a b l e s are ” l o s ” only .

113

114 summary(neomod$ re . ad )

115 pr <− f i t t e d ( pre l im . main . e f f e c t s . model )

116

117 s c a t t e r . smooth ( lo s , l og ( pr/(1−pr ) ) , cex =0.5)

118 # The smoothed s c a t t e r p l o t shows that the va r i ab l e l o s are a l l l i n e a r l y a s s o c i a t ed with

readmiss ion outcome in l o g i t s c a l e .

119

120

121 ############################################

122 # Step 4 : I n t e r a c t i o n s amoung c ova r i a t e s

123 ############################################

124

125 # Add in a l l i n t e r a c t i o n s

126

127 glm ( re . ad˜ s i z e+ge s t+emp .m+emp . f+l o s+sex+accom , fami ly = binomial ( l i n k = ” l o g i t ” ) )

128

129 i n t e r a c t i o n s . model <− glm ( re . ad˜ s i z e+ge s t+emp .m+emp . f+l o s+sex+accom+

130 s i z e : g e s t+s i z e : emp .m+s i z e : emp . f+s i z e : l o s+s i z e : sex+s i z e : accom+

131 ge s t : emp .m+ges t : emp . f+ge s t : l o s+ge s t : sex+ges t : accom+

132 emp .m: emp . f+emp .m: l o s+emp .m: sex+emp .m: accom+

133 emp . f : l o s+emp . f : sex+emp . f : accom+

134 l o s : sex+l o s : accom+

135 sex : accom ,

136 f ami ly = binomial ( l i n k = ” l o g i t ” ) )

137

138 summary( i n t e r a c t i o n s . model )

139

140 anova ( pre l im . main . e f f e c t s . model , i n t e r a c t i o n s . model , t e s t=”Chisq” )

141 # There i s no s i g n i f i c a n t d i f f e r e n c e in the models

142

143 ##### Round 1 ######

144

145 drop1 ( i n t e r a c t i o n s . model , t e s t=”Chisq” )

146

147 # Largest p−value i s 0 .89074 which means s i z e : emp .m does not s i g n i f i c a n t l y add to the

model

148

149 i n t . model . 1 <− glm ( re . ad˜ s i z e+ge s t+emp .m+emp . f+l o s+sex+accom+

150 s i z e : g e s t+s i z e : emp . f+s i z e : l o s+s i z e : sex+s i z e : accom+

151 ge s t : emp .m+ges t : emp . f+ge s t : l o s+ge s t : sex+ges t : accom+

152 emp .m: emp . f+emp .m: l o s+emp .m: sex+emp .m: accom+
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153 emp . f : l o s+emp . f : sex+emp . f : accom+

154 l o s : sex+l o s : accom+

155 sex : accom ,

156 f ami ly = binomial ( l i n k = ” l o g i t ” ) )

157

158 anova ( i n t e r a c t i o n s . model , i n t . model . 1 , t e s t=”Chisq” )

159 # There i s no s i g n i f i c a n t d i f f e r e n c e in the models , so i t i s a va l i d reduct ion .

160

161 anova ( pre l im . main . e f f e c t s . model , i n t . model . 1 , t e s t=”Chisq” )

162 # There i s no s i g n i f i c a n t d i f f e r e n c e in the models , so t h i s model i s not s i g n i f i c a n t l y

d i f f e r e n t to the pre l im inary one .

163

164 # and so on . . .

165

166 ##### Round 10 ######

167

168 drop1 ( i n t . model . 1 0 , t e s t=”Chisq” )

169

170 # Largest p−value i s 0 .47889 which means emp . f : l o s does not s i g n i f i c a n t l y add to the

model ( t e s t ed at the 5% l e v e l )

171

172 i n t . model . 11 <− glm ( re . ad˜ s i z e+ge s t+emp .m+emp . f+l o s+sex+accom+

173 s i z e : emp . f+s i z e : l o s+s i z e : sex+s i z e : accom+

174 ge s t : emp . f+ge s t : l o s+ge s t : sex+ges t : accom+

175 emp .m: sex+

176 sex : accom ,

177 f ami ly = binomial ( l i n k = ” l o g i t ” ) )

178

179

180 anova ( i n t . model . 1 0 , i n t . model . 1 1 , t e s t=”Chisq” )

181 # There i s no s i g n i f i c a n t d i f f e r e n c e in the models , so i t i s a va l i d reduct ion .

182

183 anova ( pre l im . main . e f f e c t s . model , i n t . model . 1 1 , t e s t=”Chisq” )

184 # There i s s i g n i f i c a n t d i f f e r e n c e between the models at the 5% s i g l e v e l , so the removal

o f the add i t i o na l i n t e r a c t i o n terms i s not va l i d .

185

186

187 f i n a l . model . 1 <− glm ( re . ad˜ s i z e+ge s t+emp .m+emp . f+l o s+sex+accom+

188 s i z e : emp . f+s i z e : l o s+s i z e : sex+s i z e : accom+

189 ge s t : emp . f+ge s t : l o s+ge s t : sex+ges t : accom+

190 emp .m: sex+

191 sex : accom ,

192 f ami ly = binomial ( l i n k = ” l o g i t ” ) )

193

194

195 ############################################

196 # Step 4/ 2 : I n t e r a c t i o n s amoung cova r i a t e s

197 ############################################

198

199 # We wish to t e s t each i n t e r a c t i o n s e rpa r e t e l y , and then inc lude a l l those that have

s i g n i f i c a n t e f f e c t s .

200

201 #### s i z e : g e s t ######

202

203 uni . i n t . 1 <− glm ( re . ad˜ s i z e+ge s t+emp .m+emp . f+l o s+sex+accom+

204 s i z e : gest , f ami ly = binomial ( l i n k = ” l o g i t ” ) )

205

206 summary( uni . i n t . 1 )

207

208 # None o f the l e v e l s are s i g n i f i c a n t so we do not in c lude i t in the model

209

210
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211 ##### s i z e : emp .m ######

212

213 uni . i n t . 2 <− glm ( re . ad˜ s i z e+ge s t+emp .m+emp . f+l o s+sex+accom+

214 s i z e : emp .m, fami ly = binomial ( l i n k = ” l o g i t ” ) )

215

216 summary( uni . i n t . 2 )

217

218 # None o f the l e v e l s are s i g n i f i c a n t so we do not in c lude i t in the model

219

220 # and so on . . .

221

222 #Thus ,

223

224 f i n a l . model . 2 <− glm ( re . ad˜ s i z e+ge s t+emp .m+emp . f+l o s+sex+accom+s i z e : emp . f , f ami ly =

binomial ( l i n k = ” l o g i t ” ) )

225

226 anova ( pre l im . main . e f f e c t s . model , f i n a l . model . 2 , t e s t=”Chisq” )

227 # There i s s i g n i f i c a n t d i f f e r e n c e between the models j u s t above the 5% s i g l e v e l ,

228 # so the removal o f the add i t i ona l i n t e r a c t i o n terms i s not va l i d .

229

230 anova ( f i n a l . model . 1 , f i n a l . model . 2 , t e s t=”Chisq” )

231 # There no i s s i g n i f i c a n t d i f f e r e n c e between the models at the 5% s i g l e v e l ,

232 # so the removal o f the add i t i ona l i n t e r a c t i o n terms i s va l i d .

233

234 f i n a l . model <− f i n a l . model . 2

235

236 ############################################

237 # Step 5 : Asse s s ing f i t o f the model

238 ############################################

239

240

241 hoslem . t e s t ( f i n a l . model$y , f i t t e d ( f i n a l . model ) )

242

243 # The P value i s 0 .4659 , i n d i c a t i n g that the re i s no s i g n i f i c a n t d i f f e r e n c e between

observed and pred i c t ed va lue s . ( t e s t ed at the 5% l e v e l )

244

245 Predprob <− p r ed i c t ( f i n a l . model , type=” response ” )

246 p lo t ( Predprob , j i t t e r ( as . numeric ( re . ad ) , 0 . 5 ) , cex =0.5 , ylab=” J i t t e r e d readmiss ion outcome” )

247

248 r o cp l o t ( f i n a l . model )

249

250

251 ##### Cross v a l i d a t i o n #####

252

253 #Randomly s h u f f l e the data

254 Data<−neomod . f a c t o r [ sample ( nrow (neomod . f a c t o r ) ) , ]

255

256 #Create 10 equa l l y s i z e f o l d s

257 f o l d s <− cut ( seq (1 , nrow (Data ) ) , breaks=10, l a b e l s=FALSE)

258

259 #Create data frame f o r r e s u l t s

260 accuracy <− data . frame ( acc= 1 :10 , LCI=NA, UCI=NA, sens=NA, spec=NA)

261

262 #Perform 10 f o l d c r o s s v a l i d a t i o n

263 f o r ( i in 1 : 10 ) {
264 #Segement your data by f o l d us ing the which ( ) func t i on

265 t e s t I ndexe s <− which ( f o l d s==i , a r r . ind=TRUE)

266 testData <− Data [ t e s t Indexe s , ]

267 tra inData <− Data[− t e s t Indexe s , ]

268

269 attach ( tra inData )

270 f i n a l . model <− glm ( formula = re . ad ˜ s i z e + ge s t + emp .m + emp . f + l o s + sex +
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271 accom + s i z e : emp . f , f ami ly = binomial ( l i n k = ” l o g i t ” ) )

272 detach ( tra inData )

273

274 attach ( testData )

275 testData $pred <− p r ed i c t ( f i n a l . model , testData , type=” response ” )

276 detach ( testData )

277

278 confus ionMatr ix <− confus ionMatr ix ( round ( testData $pred ) , testData $ re . ad )

279

280 accuracy $ acc [ i ] <− confus ionMatr ix $ o v e r a l l [ [ 1 ] ]

281 accuracy $LCI [ i ] <− confus ionMatr ix $ o v e r a l l [ [ 3 ] ]

282 accuracy $UCI [ i ] <− confus ionMatr ix $ o v e r a l l [ [ 4 ] ]

283 accuracy $ sens [ i ] <− confus ionMatr ix $byClass [ [ 1 ] ]

284 accuracy $ spec [ i ] <− confus ionMatr ix $byClass [ [ 2 ] ]

285 }
286

287

288 (sum( accuracy $ acc ) / 10) ∗100 #avg . accuracy

289 # 62.97161%

290

291 (sum( accuracy $ sens ) / 10) ∗100 #avg . s e n s i t i v i t y

292 # 77.43853%

293

294 (sum( accuracy $ spec ) / 10) ∗100 #avg . s p e c i f i c i t y

295 # 44.69827%

296

297

298 ##### In f e r en c e #####

299

300 new . people <− neomod . f a c t o r

301 new . people [ 1 , ] <− c (1 , 1 , 5 , 1 . 6 , 1 , 1 , 2 , 1 , 3 . 55 , 0 , 1)

302 new . people [ 2 , ] <− c (1 , 1 , 5 , 1 . 6 , 1 , 1 , 2 , 1 , 3 . 55 , 1 , 1)

303 new . people [ 3 , ] <− c (1 , 0 , 1 , 1 . 6 , 0 , 0 , 2 , 1 , 3 . 05 , 1 , 0)

304 new . people [ 4 , ] <− c (1 , 0 , 2 , 1 . 6 , 0 , 0 , 2 , 1 , 3 . 05 , 1 , 0)

305 new . people [ 5 , ] <− c (1 , 0 , 3 , 1 . 6 , 0 , 0 , 2 , 1 , 3 . 05 , 1 , 0)

306 new . people [ 6 , ] <− c (1 , 0 , 4 , 1 . 6 , 0 , 0 , 2 , 1 , 3 . 05 , 1 , 0)

307 new . people [ 7 , ] <− c (1 , 0 , 5 , 1 . 6 , 0 , 0 , 2 , 1 , 3 . 05 , 1 , 0)

308 new . people [ 8 , ] <− c (1 , 1 , 1 , 1 . 6 , 1 , 1 , 2 , 1 , 4 . 13 , 1 , 1)

309 new . people [ 9 , ] <− c (1 , 1 , 2 , 1 . 6 , 1 , 1 , 2 , 1 , 4 . 13 , 1 , 1)

310 new . people [ 1 0 , ] <−c (1 , 1 , 3 , 1 . 6 , 1 , 1 , 2 , 1 , 4 . 13 , 1 , 1)

311 new . people [ 1 1 , ] <−c (1 , 1 , 4 , 1 . 6 , 1 , 1 , 2 , 1 , 4 . 13 , 1 , 1)

312 new . people [ 1 2 , ] <−c (1 , 1 , 5 , 1 . 6 , 1 , 1 , 2 , 1 , 4 . 13 , 1 , 1)

313 new . people [ 1 3 , ] <−c (1 , 1 , 5 , 1 . 6 , 1 , 1 , 2 , 1 , 3 . 05 , 1 , 1)

314 new . people [ 1 4 , ] <−c (1 , 1 , 5 , 1 . 6 , 1 , 1 , 2 , 1 , 4 . 13 , 1 , 1)

315

316 p r ed i c t ( f i n a l . model , new . people [ 1 : 1 4 , ] , type=” response ” )
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