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Abstract

Classical methods of linear regression model building suffer when the data set is subject to mul-
ticollinearity. Ridge regression is one alternative to classical methods that can alleviate this issue.
In this paper we aim to explain the theory behind Ridge regression from a Bayesian perspective and
suggest why one might use Ridge regression over classical methods. Then, using an exemplar data
set on Diabetes provided by Efron et al. (2003) [2], we construct a series of classical and Ridge models
and compare their effectiveness, including an extension to a selection of ‘hybrid’ models. We found
that, for this data set, the classical subset models were better at the prediction of new data than
the Ridge models, but suggest situations in which the Ridge models may be preferable. We also
suggest considering other methods such as LASSO regression, Principle Component regression and
Least Angle regression [3;4].

1. Introduction

Classical methods of regression model building, such as subset selection, are common place in
many fields. They do, however, have their flaws. Classical methods of coefficient estimation suffer
greatly when multicollinearity is present in a data set. The coefficient estimates can become unstable,
anomalously large, and are subject to extreme changes when covariates are selected to be removed
or added, even changing sign in some cases [3;4]. Ridge regression is known as a shrinkage method,
and aims to alleviate this issue by applying a penalty to the size of the coefficients [3;4]. The result is
that the coefficient estimates are shrunk towards zero and each other, which introduces a bias, but
reduces their variance [3;4]. If this relationship is correctly balanced, which is regulated by a shrinkage
parameter, λ, then using Ridge regression can lead to a reduction in the Mean Squared Error of the
model. The original motivation for Ridge regression when it was first introduced by Hoerl & Kennard
(1970) [1] was to make XXXTXXX in the equation for the Ordinary Least Squares coefficient estimates have
full rank, even if two covariates were perfectly correlated, allowing it to be inverted. This is done by
adding a positive constant, λ, to the diagonal of XXXTXXX before inversion. This simple augmentation

gives the Ridge coefficient estimates, β̂ββ
ridge

. In fact, in the case of orthonormal inputs, the Ridge

coefficient estimates are just scaled versions of the Ordinary Least Squares estimates, β̂ββ
ridge

= β̂ββ
(1+λ)

[3].

During this paper we will be considering an exemplar data set to examine the application and effect of
Ridge regression compared to classical methods. The data set, as described in Efron et al. (2003) [2],
details 10 baseline covariates; age, sex, body mass index, average blood pressure, and 6 blood serum
measurements, which relate to a response variable, yyy; a quantitative measure of disease progression
one year after baseline. The data set then also includes covariates which represent the quadratic
interactions for all these variables, giving a total of 64 covariates. The data set contains observations
for 442 unique individuals, with no missing data. The covariates have been centred, and scaled to
have `2−norm. In this paper we aim to explain the concepts, theory and motivation behind Ridge
regression from a Bayesian perspective, and then compare it to a range of classical models using our
exemplar data set. We wish to compare the models based on their ability to predict new data and
the ’Evidence’ for each model given the data. In §2 we derive how the Ridge coefficient estimates,

β̂ββ
ridge

, are calculated from a Bayesian perspective, and how these are then used to make predictions
on new data. We then give a brief overview of some of the tools used to build the classical models,
and then a consideration of why we would choose to use Ridge regression in place of classical methods,
and suggest some points to consider when performing Ridge regression. We then explain how we will
compare the models, including how the ’Evidence’ and Mean Squared Error are calculated, and some
diagnostics that can be performed on the Ridge regression models. In §3, we present the results of
our model building and perform some basic comparisons and analysis. We then offer some extensions
of the models, and show how they compare to their associated counterparts. In §4 we discuss the
models in more depth, and consider other aspects which could make one model preferable to another,
before making suggestions on extensions that could be considered and concluding the paper in §5.
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2. Theory and Methodology

Ridge regression is an example of a shrinkage method of model fitting, an alternative to classical
methods such as subset selection. Ridge regression works by shrinking the coefficient estimates towards
zero, and each other, by applying a penalty to their size [3;4]. From a frequentist point of view, the

Ridge coefficients, β̂ββ
ridge

, are chosen to minimise a residual sum of squares [3;4] given by:

RSS(λ) = (yyy −XβXβXβ)T (yyy −XβXβXβ) + λβββTβββ, (1)

for which the solution is

β̂ββ
ridge

= (XXXTXXX + λIp)
−1XXXTyyy, (2)

where Ip is a p×p identity matrix, XXX is a matrix of covariate observations (excluding the intercept), yyy
is a vector of the observed response variable, and λ ≥ 0 is known as the shrinkage parameter. Larger

values of lambda lead to greater shrinkage of the Ridge coefficients [3;4], with β̂ββ
ridge

= β̂ββ, the Ordinary

Least Squares estimates from classical regression, when λ = 0 and β̂ββ
ridge

→ 0 as λ→∞.
Ridge regression can also be considered from a Bayesian point of view. In this case the estimates

of the Ridge coefficients can be derived as the mean or mode of the marginal posterior distribution

of βββ, when the prior placed on βββ is MVNp(000,Σ) [3;4], where Σ is a diagonal matrix, so the βridgej ’s are

independent, for j in (1, . . . , p), where p is the number of parameters in the model. We will now show
how this result is derived.

For a given data set, let the response variable be denoted by a 1 × n matrix (column vector)
yyy = [y1, . . . , yn]T , which is explained by an n × p matrix of covariates XXX = [xxx1, . . . ,xxxp] and a 1 × p
matrix (column vector) of regression coefficients βββ = [β1, . . . , βp]

T . The observations of the response
variable can be expressed as a multivariate distribution:

yyy|τ,βββ ∼ MVNp(XXXβββ,
1
τ In) (3)

where 1
τ is the variance of residuals. Thus the likelihood is given by:

f(yyy|τ,βββ) ∝ τ
n
2 exp

(
−τ

2
(yyy −XβXβXβ)T (yyy −XβXβXβ)

)
. (4)

As described, we now place a prior on βββ, and also on τ :

βββ|τ ∼ N

(
βββ0,

1

τ
Σ0

)
, τ ∼ Gamma(a0, b0), (5)

and we let a0 = b0 = 2 to make the prior on τ uninformative, and set βββ0 = 000. Our goal is to find
the marginal posterior distributions of βββ and τ , as well as the posterior predictive distribution of the
data. To do this, we first need to find the marginal likelihood (conditional on τ) of the data, which
can be shown to be:

yyy|τ ∼ N

(
XβXβXβ0,

1

τ
(In +XΣXΣXΣ0XXX

T )

)
(6)

the proof of which is given in Appendix 6.1. Thus, by integrating out τ , we can show that the marginal
likelihood for the data (also known as the ‘Evidence’) can be expressed as:

yyy ∼ MVT2a0

(
XβXβXβ0,

b0
a0

(In +XΣXΣXΣ0XXX
T )

)
, (7)

the proof of which is given in Appendix 6.2.
We now consider a special case of a fully conjugate prior, known as a Ridge prior. The Ridge prior

is given by:

βββ ∼ MVNp(000,
1

τλ
Ip), (8)

where λ is known as the shrinkage parameter, which is fixed but unknown. In a Bayesian setting
we can estimate λ by considering a range of values, and choosing the value that maximises the (log-
)likelihood of the data. This is known as empirical Bayes. By combining the likelihood (7) with the
Ridge prior on βββ (8) and the prior on τ (5), we show in Appendix 6.3 that the marginal posterior
distributions are given by:

βββ|yyy ∼ MVT2an

(
βββn,

bn
an

Σn

)
, τ |yyy ∼ Gamma(an, bn), (9)
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where

βββn =
(
XXXTXXX + Ipλ

)−1
XXXTyyy, Σn =

(
XXXTXXX + Ipλ

)−1
,

an = a0 +
n

2
, bn = b0 +

1

2

(
yyyTyyy − βββTnΣ−1

n βββn
)
.

It can also be shown that the posterior predictive distribution for a vector of predictions yyy∗ given a
set of covariates XXX∗ is given by

yyy∗|XXX∗ ∼ MVT2an

(
XXX∗βββn,

bn
an

(In +XXX∗ΣnXXX
∗T )

)
. (10)

Thus we can see that if we wish to make a prediction yyy∗ from a set of covariatesXXX∗, this would just be
the mean of the posterior predictive distribution of the data, XXX∗βββn, where βββn is the posterior mode
(and mean) of βββ. Thus the Bayesian approach agrees with the frequentist approach, and the Ridge
coefficients are given by:

β̂ββ
ridge

= βββn = (XXXTXXX + λIp)
−1XXXTyyy. (11)

2.1. Classical Models. We wish to compare how well a Bayesian Ridge regression model compares
to a range of classical regression models. The first model we wish to fit is the ‘full’ model. In this
model no variable selection is implemented, and the coefficient estimates are computed in the classical
sense using iteratively re-weighted least squares [5].

The second classic model we wish to consider is one that uses step-wise variable selection [3;4] using
the Akaike Information Criterion (AIC) [3;4], which we will denote the ‘AIC’ model. The AIC is a
measure of the fit and parsimony of a regression model. It is defined as:

AIC = −2`(x) + 2d, (12)

where `(x) is the log-likelihood of the data x, and d is the number of parameters in the model. The
model with the lowest AIC is considered to be the most parsimonious best fitting model. The AIC
has the benefit that the models do not have to be nested. We use the AIC during step-wise variable
selection as the metric by which to judge if a parameter is removed or added to the model.

Our third classic model will again be using step-wise variable selection, this time with the Bayes
Information Criterion (BIC) [3;4], and we denote it the ‘BIC’ model. The BIC is an alternative to the
AIC. It is defined as:

BIC = −2`(x) + log(N)d, (13)

where `(x) is the log-likelihood of the data x, d is the number of parameters in the model, and N is
number of observations in the data. Similarly to the AIC, the model with the lowest BIC is considered
to be the most parsimonious best fitting model, and has the benefit that the models being compared
do not have to be nested. In general, the BIC penalises models with more parameters more than the
AIC, since log(N) > 2 in most cases, thus the BIC aims for more parsimonious models.

2.2. Why use Ridge regression? Classical linear regression does not fare well when the input
data suffers from multicollinearity. Multicollinearity occurs when variables are highly correlated [5],
for example, if two variables measure the same thing on two different scales (say height in meters and
inches) they will be highly correlated. This means that the design matrix, XXX, will not have full rank
(or will be very close to having not full rank). This means that, due to the way the Ordinary Least
Squares estimates are calculated, the coefficient estimates will be unstable (also called being poorly

determined or defined) and will exhibit high variance [3;4]. For instance, one covariate may have an
anomalously large positive coefficient, which in every instance will be cancelled by an anomalously
large negative coefficient of the covariate it is highly correlated with. Removing one of these covariates
from the model will lead the other’s coefficient to change drastically, possibly even changing sign. By
applying a penalty to the size of the coefficients, Ridge regression alleviates this problem. This works
because a positive constant is added to the diagonal of the design matrix, meaning that it gains full
rank (becomes non-singular and has an inverse) [3;4].

However, Ridge regression is not guaranteed to be better than classical regression in every instance.

The Ridge coefficients are biased, E[β̂ββ
ridge

] 6= βββ, whereas the classical coefficient estimates β̂ββ are not [4].
Since the Mean Squared Error = bias2 + V ariance, for the Ridge model to improve on the accuracy
of the classical model, the bias gained must be outweighed by the reduction in the variance. In cases
where multicollinearity is not an issue, the Ridge estimates can add bias while making negligible



4 32102717

difference to the variance, and as such the MSE will increase. In addition, where as the Ordinary
Least Squares coefficient estimates are invariant under scaling, the Ridge coefficient estimates are
not [3;4]. This means that multiplying covariate XXXj by a constant c simply scales the OLS estimates

by a factor of 1
c (equivalently, regardless of what value c takes, XXXj β̂j remains the same) [4]. This is not

true for the Ridge coefficient estimates, which can change dramatically when the associated covariate

is scaled. This is due to the quadratic penalty term in (1), which causes each β̂ridgej to not only be
dependent on the scaling of their associated covariate, but also on λ, and the value of the other ridge
coefficients [4]. For this reason it is not uncommon to scale and centre the data before calculating

β̂ββridge
[3;4]. Also notice how the intercept coefficient is not included in (1) and is not penalised. After

scaling and centring the data, we estimate the intercept by βridge0 = ȳ = 1
n

∑N
i=1 yi

[3;4].

2.3. Comparing models. One way of comparing models is calculate the ‘Evidence’ for each one.
The model with the greatest ‘Evidence’ is considered to be the most appropriate for the data. We
showed in §2 that the marginal likelihood of the data is given by:

yyy ∼ MVT2a0

(
XβXβXβ0,

b0
a0

(In +XΣXΣXΣ0XXX
T )

)
, (14)

where XXX a matrix of covariates, βββ0 = 000, In is an n× n identity matrix, and Σ0 = 1
λIp, where Ip is a

p×p identity matrix. Given a data setXXX and response data yyy we can calculate the evidence (marginal
likelihood) of the model via:

Evidence = f(yyy) =
Γ(ν+p2 )Γ(ν2 )

|Σ|
1
2 (νπ)

p
2

[
1 +

(yyy −XβXβXβ0)TΣ−1(yyy −XβXβXβ0)
ν

]−ν+p2
, (15)

where ν = 2a0, p is the number of parameters in the data, and Σ = b0
a0

(In +XXXΣ0XXX
T ).

An alternative to the ‘Evidence’ is to consider how well the model predicts new data, which in
many circumstances is often the most important factor in choosing a final model. Many different
types of models have many different types of tests for the predictivity of a model. We have chosen to
calculate the Mean Squared Error (MSE) [3;4] for prediction for each model, and the model that has
the lowest MSE will be the best at predicting. We can calculate the MSE via:

MSE =

∑n
i=1(yi − y∗i )2

n
, (16)

where n is the number of predicted data points, yi is the known response value for a given set of
observations xi, and y∗i is the predicted response value for the same set of observations. The MSE
calculates an average of the squared distance between the true and predicted response values; the
lower the MSE, the closer the predicted and true response values, thus the better the fit of the model.

To calculate the out of sample predictivity we need to test how well our fitted model predicts new
data. To did this we will use k-fold cross validation [3;4] with the Mean Squared Error. We first divide
the data into k equal sets, where we have chosen k = 10, we then choose one set to be a ‘test set’ and
use the other nine sets to train the model. This trained model is then used to predict the test set,
and calculate the MSE. We repeat this procedure ten times, selecting a new set to be the ‘test set’
each time. This can give us a good idea about how well our chosen model predicts for new data.

Another aspect of the fit of the Ridge regression model we can consider is how many of the true
response values are outliers (in each test set of our 10-fold cross validation) given our assumed posterior
predictive distribution, as given in (10). If the probability of seeing the true value of our response
variable under the posterior predictive distribution is ≤ 0.05 then this point in an outlier; it is unlikely
to be drawn from the given posterior predictive distribution.

3. Results and Analysis

Initially 4 models were produced, the ‘full’, ‘AIC’, ‘BIC’, and ‘Ridge’ models, as described in §2.
We also considered a Ridge regression model where the intercept was penalised, which we denote
‘Ridge.int’. Since we have utilised 10-fold cross validation, fitted model parameters and example
predictions that are referenced in this section are associated with models fitted with the full data set.

By considering a range of values for the shrinkage parameter, λ, we found the value that gave
the strongest evidence for the ‘Ridge’ regression model (the one which maximised the value of the
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marginal likelihood). This value was λopt = 2.7786 which was calculated using all the data, however,
a new optimal lambda was calculated for each data set when doing cross validation. We can see from
Figure 1 that this was a global maxima. Similarly, for the ‘Ridge.int’ model λopt = 0.1475.
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Figure 1. The Evidence of the ‘Ridge’ model (the intercept not penalised) evaluated at different
values of λ: (A) A zoomed plot to show the value of λ that maximises the Evidence for the ‘Ridge’
model. (B) A plot that shows the chosen value of lambda is a global maxima.

The models were compared on how large the ‘Evidence’ for each model was, assessed using the
marginal log-likelihood, and how well each model predicted new data, assessed using 10-fold cross val-
idation with Mean Squared Error. As we can see from Table 1, the ‘Ridge.int’ model (closely followed
by the ‘Ridge’ model) had the highest log(evidence) with a value of -264.92 (-265.76 respectively) and
the ‘AIC’ model had the lowest with a value of -568.23, a substantial difference of almost 300. In
contradiction, the ‘BIC’ model had the lowest the average MSE value with a value of 2788.55, and
the ’full’ model had the highest with a value of 3903.22. Lower values of the evidence were associated
with both the highest MSE (the ‘full’ model) and the lowest MSE (the ‘BIC’ model).

Model Avg. MSE MSE Std. Dev. Avg. Log(Evidence) Log(Evidence) Std. Dev.
Full 3903.22 1088.83 -544.59 5.43

Ridge 3807.29 556.66 -265.76 3.43
Ridge.int 3163.24 587.02 -264.92 5.02

AIC 2856.39 524.83 -568.23 22.77
BIC 2788.55 531.23 -456.31 7.73

Table 1. Model comparisons. The summary statistics resulting from 10-fold cross validation
utilising the Mean Squared Error and the log of the ’Evidence’ for each model.

In our ‘Ridge’ model, we did not have any outliers in any of our test sets, in our ‘Ridge.int’ model
(where the intercept is penalised) we detected a total of 41 outliers across all test sets.

As an extension of these models, we also consider hybrid models, to see the effect of estimating the
parameters of subset models via Ridge methods. We propose an additional four models; ‘AIC.Ridge’
(the covariates of the ‘AIC’ model with estimates calculated via Ridge regression), ‘AIC.Ridge.int’
(equivalently, but the Ridge estimates calculated include penalising the intercept), ‘BIC.Ridge’ (the
covariates of the ‘BIC’ model with estimates calculated via Ridge regression), and ‘BIC.Ridge.int’
(equivalently, but the Ridge estimates calculated include penalising the intercept). We can see from
Table 2 that the hybrid model with the lowest average MSE is the ‘BIC.Ridge.int’ model, with an
average MSE of 2812.74. The ‘AIC.Ridge’ model had the highest average MSE of 3281.34. Alterna-
tively, the ’BIC.Ridge’ model had the largest average log(Evidence), with a value of -261.54, and the
‘BIC.Ridge.int’ had the smallest at -267.48. However, there was very little difference in the average
log(Evidence) for the four hybrid models, all four falling within 6 points of each other.

By comparing Table 1 and 2, we can see the effect that adapting each model to have Ridge coeffi-
cients has. In general, adding Ridge coefficients that are calculated via penalising the intercept have
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Model Avg. MSE MSE Std. Dev. Avg. Log(Evidence) Log(Evidence) Std. Dev.
AIC.Ridge 3281.34 571.70 -262.97 4.15
BIC.Ridge 3005.83 558.15 -261.54 4.44

AIC.Ridge.int 2887.05 577.06 -266.95 5.37
BIC.Ridge.int 2812.74 565.32 -267.48 4.45

Table 2. Hybrid model comparisons. The summary statistics resulting from 10-fold cross valida-
tion utilising the Mean Squared Error and the log of the ’Evidence’ for each hybrid model.

lower Mean squared error then their alternatives, however, neither method of estimating the Ridge
coefficients lowers the MSEs beyond that of the associated classical subset models. For instance, the
lowest average MSE in the hybrid models is associated with ‘BIC.Ridge.int’ with 2812.74, but the
classical ‘BIC’ model has an average MSE of 2788.55. If we consider another point of view and look at
the hybrid models as selecting a subset of covariates in the ‘Ridge’ and ‘Ridge.int’ models, we can see
that all four hybrid models in Table 2 have lower average MSEs than their associated Ridge regres-
sion model in Table 1. For the log(Evidence) however, adapting each model to have Ridge coefficients
drastically increases the log(Evidence) compared to their classical counterparts, with classical models
having a value around -500, and the hybrid models having a value around -265. The ‘AIC.Ridge’ and
‘BIC.Ridge’ models even improve on the log(Evidence) of their associated model, ‘Ridge’.

4. Discussion

It is clear from Table 1 that, for this data set, the classical subset models are better at predicting
the response variable, a quantitative measure of disease progression one year after baseline, for new
data once the model is trained. In fact the ‘Ridge’ model which does not penalise the intercept is
barely better than the classical ‘full’ model. It is interesting to note that in all cases, including the
hybrid models, the Ridge estimates that penalise the intercept are able to predict new data far better
than when the intercept is calculated as the mean of the response variables from the training data,
despite the fact that the literature (and common practice) is to not penalise the intercept. This could
simply be a random occurrence for this data set that does not occur in general.

By comparing Table 1 and 2, we can see that for out of sample predicitivity, the classical subset
models are generally better than their Ridge regression counterparts. Part of the reason to choose
Ridge regression and other shrinkage methods over classical subset methods is that they are less
computationally intensive, for this reason, for extremely large and complex models, Ridge regression
may be used even if the predicitivity is expected to suffer. The hybrid models would require one
to run both subset selection and Ridge regression, and so would increase the computational burden,
and since they do not improve on the classical subset models’ ability to predict, there is very little
evidence to suggest they would be worth implementing. It makes sense that these hybrid models
are not as effective as the classical subset models, since the subset models are less likely to exhibit
multicollinearity, and as of thus their estimates are going to have smaller variance, so the bias added by
Ridge coefficients will outweigh the negligible additional reduction in variance they provide. A better
method for incorporating variable selection into a shrinkage method is to use LASSO regression [3;4].
LASSO regression works in much the same way that Ridge regression does, except that the prior put
on βββ is a multivariate double-exponential distribution (also known as a Laplace distribution) with a

mean of 000 and a scale parameter that is a function of λ [4]. The LASSO coefficient estimates are given
by the posterior mode of βββ (but not the mean) [4]. We suggest that it would be worth performing
LASSO regression on this data set, and comparing how effective it is at predicting new data to both
the Ridge regression models and the classical subset models.

5. Conclusion

We have given an overview of the theory behind Bayesian Ridge regression, and compared its
performance to classical methods of model building. For this particular dataset we found that Ridge
regression was not as effective as classical subset methods of regression. Ridge regression is still a
very useful tool however, and there will be lots of circumstances where it will perform better than
classical methods. In addition there are lots of other regression methods that could be considered,
such as LASSO regression, Principle Component regression and Least Angle regression [3;4].
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6. Appendix

6.1. Proof 1. The model can be reformulated such that

yyy = XβXβXβ + ε1 where ε1 ∼ Normal(000, 1τ In), (17)

βββ = β0 + ε2 where ε2 ∼ Normal(000, 1τΣ0). (18)

and we can combine these two elements such that

yyy = XXXβ0 + ε2 + ε1 (19)

thus yyy|τ has a Normal distribution, as it is a linear combination of independent normal distributions,
with mean given by

E[yyy] = E[XXXβ0 + ε2 + ε1] (20)

= E[XXXβ0] + E[XXXε2] + E[ε1] (21)

= XXXβ0 + E[XXXε2] + E[ε1] (22)

= XXXβ0 +XXX000 + 000 (23)

= XXXβ0 (24)

by the linearity of expectation, and variance given by

Var(yyy) = Var(XXXβ0 + ε2 + ε1) (25)

= Var(XXXβ0) + Var(XXXε2) + Var(ε1) (26)

+ 2Cov(XXXβ0,XXXε2) + 2Cov(XXXβ0, ε1) + 2Cov(XXXε2, ε1) (27)

= 000 + Var(XXXε2) + Var(ε1) + 000 + 000 + 000 (28)

= XXXVar(ε2)XXX
T + Var(ε1) (29)

= XXX( 1τΣ0))XXX
T + ( 1τ In) (30)

= 1
τ (In +XXXΣ0XXX

T ). (31)

Thus,

yyy|τ ∼ N

(
XβXβXβ0,

1

τ
(In +XΣXΣXΣ0XXX

T )

)
. (32)

6.2. Proof 2.

f(yyy|τ) ∝ 1∣∣2π 1
τ (In +XΣXΣXΣ0XXXT )

∣∣12 exp
{
−1

2(yyy −XβXβXβ0)T
(
1
τ (In +XXXΣ0XXX

T )
)−1

(yyy −XβXβXβ0)
}

(33)

∝ τ
n
2 exp

{
−1

2(yyy −XβXβXβ0)T
(
1
τ (In +XXXΣ0XXX

T )
)−1

(yyy −XβXβXβ0)
}
. (34)

and we know that the prior on τ is given by

f(τ) ∝ ba00
Γ(a0)

τa0−1 exp{−b0τ} (35)

∝ τa0−1 exp{−b0τ}. (36)
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thus we can find the joint distribution of the two using Bayes theorem,

f(yyy, τ) ∝ f(yyy|τ)f(τ) (37)

∝ τ
n
2 exp

{
−1

2(yyy −XβXβXβ0)T
(
1
τ (In +XXXΣ0XXX

T )
)−1

(yyy −XβXβXβ0)
}
τa0−1 exp{−b0τ} (38)

∝ τ
n
2 +a0−1 exp

{
−τ
[
1
2(yyy −XβXβXβ0)T

(
In +XXXΣ0XXX

T
)−1

(yyy −XβXβXβ0) + b0

]}
(39)

By integrating out τ from this joint distribution we can find the marginal likelihood for yyy,

f(yyy) =

∫
f(yyy, τ)dτ (40)

∝
∫
τ
n
2 +a0−1 exp

{
−τ
[
1
2(yyy −XβXβXβ0)T

(
In +XXXΣ0XXX

T
)−1

(yyy −XβXβXβ0) + b0

]}
dτ (41)

This is the kernel of a Gamma
(
n
2 + a0,

1
2(yyy −XβXβXβ0)T

(
In +XXXΣ0XXX

T
)−1

(yyy −XβXβXβ0) + b0

)
distribution,

so

f(yyy) ∝
Γ(n2 + a0)[

1
2(yyy −XβXβXβ0)T (In +XXXΣ0XXXT )−1 (yyy −XβXβXβ0) + b0

]n
2 +a0

(42)

∝ (b0)
−(n+2a0)

2

[
1 + 1

2b0
(yyy −XβXβXβ0)T

(
In +XXXΣ0XXX

T
)−1

(yyy −XβXβXβ0)
]−(n+2a0)

2
(43)

∝
[
1 + 1

2b0
a0
a0

(yyy −XβXβXβ0)T
(
In +XXXΣ0XXX

T
)−1

(yyy −XβXβXβ0)
]−(n+2a0)

2
(44)

∝

1 +
(yyy −XβXβXβ0)T

[
b0
a0

(
In +XXXΣ0XXX

T
)]−1

(yyy −XβXβXβ0)

2a0


−(n+2a0)

2

(45)

Thus, the marginal distribution of yyy is given by

yyy ∼ MVT2a0

(
XβXβXβ0,

b0
a0

(In +XΣXΣXΣ0XXX
T )

)
. (46)

6.3. Proof 3. We know that

π(yyy|τ,βββ) ∝ τ
n
2 exp

{
− τ

2 (yyy −XβXβXβ)T (yyy −XβXβXβ)
}

(47)

π(βββ|τ) ∝ (τλ)
p
2 exp

{
− τλ

2 βββ
Tβββ
}

(48)

π(τ) ∝ τa0−1 exp {−b0τ} . (49)

Thus we can use Bayes rule such that

π(τ |βββ) ∝ π(βββ|τ)pi(τ) (50)

∝ (τλ)
p
2 exp

{
− τλ

2 βββ
Tβββ
}
τa0−1 exp {−b0τ} (51)

∝ τ (
p
2+a0−1) exp

{
−τ
[
b0 + λ

2βββ
Tβββ
]}

(52)

and as such

π(τ,βββ|yyy) ∝ π(yyy|τ,βββ)π(τ,βββ) (53)

∝ τ
n
2 exp

{
− τ

2 (yyy −XβXβXβ)T (yyy −XβXβXβ)
}
τ (
p
2+a0−1) exp

{
−τ
[
b0 + λ

2βββ
Tβββ
]}

(54)

∝ τ (
n
2 +

p
2+a0−1)exp

{
−τ
[
b0 + 1

2λβββ
Tβββ + 1

2(yyy −XβXβXβ)T (yyy −XβXβXβ)
]}
. (55)

Now, let Z =
[
b0 + 1

2λβββ
Tβββ + 1

2(yyy −XβXβXβ)T (yyy −XβXβXβ)
]
, then

Z = b0 + 1
2λβββ

Tβββ + 1
2

[
yyyTyyy − yyyTXβXβXβ − βββTXXXTyyy + βββTXXXTXβXβXβ

]
(56)

= b0 + 1
2yyy

Tyyy + 1
2

[
λβββTβββ − (XXXTyyy)Tβββ − βββTXXXTyyy + βββTXXXTXβXβXβ

]
(57)

= b0 + 1
2yyy

Tyyy + 1
2

[
−(XXXTyyy)Tβββ − βββTXXXTyyy + βββT (XXXTXXX + Ipλ)βββ

]
. (58)
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Now define

βββn =
(
XXXTXXX + Ipλ

)−1
XXXTyyy, Σn =

(
XXXTXXX + Ipλ

)−1
,

an = a0 +
n

2
, bn = b0 +

1

2

(
yyyTyyy − βββTnΣ−1

n βββn
)
.

So that

Z = b0 + 1
2yyy

Tyyy + 1
2

[
−(Σ−1

n βββn)Tβββ − βββTΣ−1
n βββn + βββTΣ−1

n βββ
]

(59)

= b0 + 1
2yyy

Tyyy + 1
2

[
−βββTnΣ−1

n βββ − βββTΣ−1
n βββn + βββTΣ−1

n βββ
]

(60)

= bn + 1
2

[
βββTnΣ−1

n βββn − βββTnΣ−1
n βββ − βββTΣ−1

n βββn + βββTΣ−1
n βββ

]
(61)

= bn + 1
2

[
(βββ − βββn)TΣ−1

n (βββ − βββn)
]
. (62)

Thus,

π(τ,βββ|yyy) ∝ τ (
n
2 +

p
2+a0−1)exp

{
−τ
[
bn + 1

2

[
(βββ − βββn)TΣ−1

n (βββ − βββn)
]]}

(63)

∝ τ (
p
2+an−1)exp

{
−τ
[
bn + 1

2

[
(βββ − βββn)TΣ−1

n (βββ − βββn)
]]}

, (64)

which is proportional to a Gamma
(p
2 + an, bn + 1

2(βββ − βββn)TΣ−1
n (βββ − βββn)

)
. Thus by integrating out τ

we can find the marginal distribution of βββ, using the fact that π(τ,βββ|yyy) has the form of a Gamma
kernel

π(βββ|yyy) =

∫
π(τ,βββ|yyy)dτ (65)

∝
Γ(p2 + an)[

bn + 1
2(βββ − βββn)TΣ−1

n (βββ − βββn)
](p2+an) (66)

∝
[
bn + 1

2(βββ − βββn)TΣ−1
n (βββ − βββn)

]−(
p+2an

2 )
(67)

∝ b
−(

p+2an
2 )

n

[
1 + 1

2
1
bn

(βββ − βββn)TΣ−1
n (βββ − βββn)

]−(
p+2an

2 )
(68)

∝
[
1 + 1

2an
(βββ − βββn)T ( bnan Σn)−1(βββ − βββn)

]−(
p+2an

2 )
. (69)

Thus, the marginal distribution of βββ is given by

βββ|yyy ∼ MVT2an

(
βββn,

bn
an

Σn)

)
. (70)

Alternatively, by integrating out βββ from π(τ,βββ|yyy) we can find the marginal distribution of τ

π(τ |yyy) =

∫
π(τ,βββ|yyy)dβββ (71)

=

∫
τ (
p
2+an−1)exp

{
−τ
[
bn + 1

2

[
(βββ − βββn)TΣ−1

n (βββ − βββn)
]]}

dβββ (72)

= τ (an−1)exp {−τbn}
∫
τ
p
2 exp

{
−τ 1

2

[
(βββ − βββn)TΣ−1

n (βββ − βββn)
]}
dβββ. (73)

The term inside the integral is the kernel of a multivariate Gaussian distribution, and as such

π(τ |yyy) = τ (an−1)exp {−τbn}det(2πΣn) (74)

∝ τ (an−1)exp {−τbn} . (75)

Thus, the marginal distribution of τ is given by

τ |yyy ∼ Gamma (an, bn) . (76)
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6.4. R code. The R code that was used to fit all the models presented in this paper is detailed below.

1 ####################################

2 ######## BAYES PROJECT CODE ########

3 ####################################

4

5 l i b r a r y ( ”mvnfast ” )

6 l i b r a r y ( ca r e t )

7 l i b r a r y (MASS)

8

9 data <− read . csv ( ” d i abe t e s . csv ” )

10

11 y <− data [ , 2 ]

12

13 X. i n t <− data [ ,−2]

14 X. i n t [ , 1 ] <− 1

15 colnames (X. i n t ) [ 1 ] <− ” Int ”

16

17 X. no . i n t <− data [ , − (1 :2 ) ]

18

19 a 0 = 2

20 b 0 = 2

21

22

23

24 #######################

25 ##### Find Lambda #####

26 #######################

27

28

29 l l h . y=func t i on ( lambda , X, y ) {
30

31 X=as . matrix (X)

32 p=nco l (X)

33 n=nrow (X)

34 a=2

35 b=2

36 S=diag (1 /lambda , p)

37

38 COV = b/a∗ ( d iag (1 , n ) + X%∗%S%∗%t (X) )

39

40 l l h = dmvt( t ( y ) , rep (0 , n) ,COV,2 ∗a , l og=TRUE)
41

42 re turn ( l l h )

43 }
44

45

46 neg l l h . y=func t i on ( lambda , X, y ) {
47

48 l l h <− l l h . y ( lambda , X, y )

49

50 re turn (− l l h )

51 }
52

53 S <− optim ( 0 . 1 , n eg l l h . y , X=X. no . int , y=y , method=”Brent” , lower =0.001 , upper=100 , he s s i an

=T)

54

55 lambda opt <− S$par

56

57 #plo t lambda

58



BAYESIAN RIDGE REGRESSION: AN OVERVIEW AND COMPARISON TO CLASSICAL REGRESSION. 11

59 lambda <− seq ( from = 2 .5 , to = 3 . 5 , l ength . out = 1000)

60

61 l o g l i k = 1

62 f o r ( i in 1 :1000) {
63 l o g l i k [ i ] <− l l h . y ( lambda [ i ] , X. no . int , y )

64 }
65

66 p lo t ( lambda , l o g l i k , type = ” l ” , xlab = expr e s s i on ( lambda ) , ylab = ” log ( L ike l i hood ) ” ,

main =expr e s s i on ( paste ( ”The Evidence eva luated at d i f f e r e n t va lue s o f ” , lambda ) ) )

67 ab l i n e ( v = lambda opt , c o l = ” red ” )

68

69

70 #####################################

71 ##### Find Po s t e r i o r Parameters #####

72 #####################################

73

74

75 post . param <− f unc t i on ( a0 , b0 , lambda , X, y ) {
76

77 X <− as . matrix (X)

78

79 p <− nco l (X)

80

81 n <− nrow (X)

82

83 beta n <− s o l v e ( t (X)%∗%X + diag ( lambda , p) ) %∗% t (X) %∗% y

84

85 Sigma n <− s o l v e ( t (X)%∗%X + diag ( lambda , p) )

86

87 a n <− a0 + n/2

88

89 b n <− b0 + 0 .5 ∗ ( t ( y ) %∗% y − t ( beta n) %∗% so l v e ( Sigma n) %∗% beta n)

90

91 params <− l i s t ( beta n , Sigma n , a n , b n)

92

93 re turn ( params )

94 }
95

96 post . params <− post . param (2 ,2 , lambda opt , X. no . int , y )

97

98

99 ###########################################################

100 ##### Find the ev idence f o r a subset o f the v a r i a b l e s #####

101 ###########################################################

102

103

104 Evidence <− f unc t i on (X, y , var , a 0 = 2 , b 0 = 2 , lambda ) {
105

106 X <− X[ , var ]

107 X <− as . matrix (X)

108 p <− nco l (X)

109 n <− nrow (X)

110 S 0 <− diag (1 /lambda , p)

111 beta 0 <− as . matrix ( rep (0 , p) )

112

113 mean <− X %∗% beta 0

114 COV <− (b 0/a 0) ∗ ( d iag (n) + X%∗%S 0%∗%t (X) )

115

116 l l h <− dmvt(X = t (y ) , mu = mean , sigma = COV, df = 2∗a 0 , l og = TRUE)

117
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118 re turn ( l l h )

119 }
120

121

122 Evidence (X. no . int , y , c (−3) , 2 , 2 , lambda opt )

123

124

125 ###############################################################

126 ######## BAYES PROJECT: Model Bui ld ing and Diagnos t i c s ########

127 ###############################################################

128

129

130 #Randomly s h u f f l e the data

131 DataMix <− data [ sample ( nrow ( data ) ) , ]

132

133 yMIX <− DataMix [ , 2 ]

134

135 XMIX. i n t <− DataMix [ ,−2]

136 XMIX. i n t [ , 1 ] <− 1

137 colnames (XMIX. i n t ) [ 1 ] <− ” Int ”

138

139 XMIX. no . i n t <− DataMix [ , − (1 :2 ) ]

140

141

142 #Create 10 equa l l y s i z e f o l d s

143 f o l d s <− cut ( seq (1 , nrow (XMIX. no . i n t ) ) , breaks=10, l a b e l s=FALSE)

144

145

146 ########## Ful l Model (L=0) ##########

147

148 model . f u l l = lm(y˜ . , data=as . data . frame (X. no . i n t ) ) # model with every covar i a t e ,

i n c l ud ing an i n t e r c e p t

149

150 MSE. f u l l <− data . frame (Run = 1 :10 , MSE = NA)

151

152 Evidence . f u l l <− data . frame (Run = 1 :10 , Evidence = NA)

153

154 #Perform 10 f o l d c r o s s v a l i d a t i o n

155 f o r ( i in 1 : 10 ) {
156 #Segement your data by f o l d us ing the which ( ) func t i on

157 t e s t I ndexe s <− which ( f o l d s==i , a r r . ind=TRUE)

158 testData <− XMIX. no . i n t [ t e s t Indexe s , ]

159 tra inData <− XMIX. no . i n t [− t e s t Indexe s , ]

160 tes tResponse <− yMIX[ t e s t I ndexe s ]

161 t ra inResponse <− yMIX[− t e s t I ndexe s ]

162

163

164 model <− lm( tra inResponse ˜ . , data=as . data . frame ( tra inData ) )

165

166 testData $pred <− p r ed i c t (model , testData , type=” response ” )

167

168 MSE. f u l l [ i , 2 ] <− (1 / l ength ( testResponse ) ) ∗ sum( ( testResponse − testData $pred ) ˆ2 )

169

170 Evidence . f u l l [ i , 2 ] <− Evidence (X = testData , y = testResponse , c ( 1 : nco l ( testData ) ) ,

a 0 , b 0 , lambda = 0.000000000001)

171

172 }
173

174

175
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176 ########## AIC Model (L=0) ##########

177

178 model .AIC = step (model . f u l l ) # AIC

179

180 Names .AIC = names (model .AIC$ c o e f f ) # the names o f the c o e f f i c i e n t s chosen by AIC

181 Covar iate s .AIC = match (Names .AIC , names (X. no . i n t ) )

182 Covar iate s .AIC <− Covar iate s .AIC[−1]

183

184 MSE.AIC <− data . frame (Run = 1 :10 , MSE = NA)

185

186 Evidence .AIC <− data . frame (Run = 1 :10 , Evidence = NA)

187

188 #Perform 10 f o l d c r o s s v a l i d a t i o n

189 f o r ( i in 1 : 10 ) {
190 #Segement your data by f o l d us ing the which ( ) func t i on

191 t e s t I ndexe s <− which ( f o l d s==i , a r r . ind=TRUE)

192 testData <− XMIX. no . i n t [ t e s t Indexe s , ]

193 tra inData <− XMIX. no . i n t [− t e s t Indexe s , ]

194 tes tResponse <− yMIX[ t e s t I ndexe s ]

195 t ra inResponse <− yMIX[− t e s t I ndexe s ]

196

197

198 model <− lm( tra inResponse ˜ . , data=as . data . frame ( tra inData ) [ , Covar ia tes .AIC ] )

199

200 testData $pred <− p r ed i c t (model , testData , type=” response ” )

201

202 MSE.AIC [ i , 2 ] <− (1 / l ength ( testResponse ) ) ∗ sum( ( testResponse − testData $pred ) ˆ2 )

203

204 Evidence .AIC [ i , 2 ] <− Evidence (X = testData , y = testResponse , Covar iates .AIC , a 0 , b

0 , lambda = 0.000000000001)

205

206 }
207

208 ########## BIC Model (L=0) ##########

209

210 model . BIC = step (model . f u l l , k=log ( nrow (X. no . i n t ) ) ) # k=2 i s AIC , k= log (n) i s the BIC

211

212 Names .BIC = names (model . BIC$ c o e f f ) # the names o f the c o e f f i c i e n t s chosen by AIC

213 Covar iate s . BIC = match (Names . BIC , names (X. no . i n t ) )

214 Covar iate s . BIC = Covar ia te s . BIC[−1]

215

216 MSE.BIC <− data . frame (Run = 1 :10 , MSE = NA)

217

218 Evidence . BIC <− data . frame (Run = 1 :10 , Evidence = NA)

219

220 #Perform 10 f o l d c r o s s v a l i d a t i o n

221 f o r ( i in 1 : 10 ) {
222 #Segement your data by f o l d us ing the which ( ) func t i on

223 t e s t I ndexe s <− which ( f o l d s==i , a r r . ind=TRUE)

224 testData <− XMIX. no . i n t [ t e s t Indexe s , ]

225 tra inData <− XMIX. no . i n t [− t e s t Indexe s , ]

226 tes tResponse <− yMIX[ t e s t I ndexe s ]

227 t ra inResponse <− yMIX[− t e s t I ndexe s ]

228

229

230 model <− lm( tra inResponse ˜ . , data=as . data . frame ( tra inData ) [ , Covar ia tes . BIC ] )

231

232 testData $pred <− p r ed i c t (model , testData , type=” response ” )

233

234 MSE.BIC [ i , 2 ] <− (1 / l ength ( testResponse ) ) ∗ sum( ( testResponse − testData $pred ) ˆ2 )
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235

236 Evidence . BIC [ i , 2 ] <− Evidence (X = testData , y = testResponse , Covar iates . BIC , a 0 , b

0 , lambda = 0.000000000001)

237

238 }
239

240

241

242 ########## Shrunken Model ( Ridge , L = L opt ) ##########

243

244 MSE. shrunk <− data . frame (Run = 1 :10 , MSE = NA)

245

246 Evidence . shrunk <− data . frame (Run = 1 :10 , Evidence = NA)

247

248 PPV <− XMIX. no . i n t [ , 1 : 2 ]

249

250 #Perform 10 f o l d c r o s s v a l i d a t i o n

251 f o r ( i in 1 : 10 ) {
252 #Segement your data by f o l d us ing the which ( ) func t i on

253 t e s t I ndexe s <− which ( f o l d s==i , a r r . ind=TRUE)

254 testData <− XMIX. no . i n t [ t e s t Indexe s , ]

255 tra inData <− XMIX. no . i n t [− t e s t Indexe s , ]

256 tes tResponse <− yMIX[ t e s t I ndexe s ]

257 t ra inResponse <− yMIX[− t e s t I ndexe s ]

258

259

260 L <− optim ( 0 . 1 , n eg l l h . y , X=trainData , y=trainResponse , method=”Brent” , lower =0.001 ,

upper=10, he s s i an=T)

261

262 L opt <− L$par

263

264 params <− post . param (2 ,2 ,L opt , tra inData , t ra inResponse )

265

266 beta n <− params [ [ 1 ] ]

267

268 Sigma n <− params [ [ 2 ] ]

269

270 a n <− params [ [ 3 ] ]

271

272 b n <− params [ [ 4 ] ]

273

274 testData $pred <− mean( testResponse ) + as . matrix ( testData )%∗%as . matrix ( beta n)

275

276 MSE. shrunk [ i , 2 ] <− (1 / l ength ( testResponse ) ) ∗ sum( ( testResponse − testData $pred ) ˆ2

)

277

278 Evidence . shrunk [ i , 2 ] <− Evidence (X = testData , y = testResponse , c ( 1 : nco l ( testData ) )

, a 0 , b 0 , lambda = L opt )

279

280 t e s t . ppv = 0

281

282 f o r ( j in 1 : l ength ( testResponse ) ) {
283

284 sd = (b n/a n ∗ (1 + as . matrix ( testData [ j ,−65]) %∗% Sigma n %∗% t ( as . matrix (

testData [ j ,−65]) ) ) ) ˆ0 .5

285

286 t e s t . ppv [ j ] = min (pnorm( testResponse [ j ] , testData $pred [ j ,−65] , sd ) , 1−pnorm(

testResponse [ j ] , testData $pred [ j ,−65] , sd ) )

287

288 }
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289

290 PPV[ te s t Indexe s , 1 ] <− t e s t . ppv

291

292 }
293

294 names (PPV) [ 1 : 2 ] <− c ( ”P−va lue s ” , ” Out l i e r ?” )

295

296 f o r ( i in 1 : nrow (PPV) ) {
297 i f (PPV[ i , 1 ] < 0 . 05 ) {PPV[ i , 2 ] = TRUE} e l s e {PPV[ i , 2 ] = FALSE}
298 }
299 summary( as . f a c t o r (PPV[ , 2 ] ) )

300

301 ########## Int e r c ep t Ridge Model ( Ridge , L = L opt ) ##########

302

303 MSE. r i dge . i n t <− data . frame (Run = 1 :10 , MSE = NA)

304

305 Evidence . r i dg e . i n t <− data . frame (Run = 1 :10 , Evidence = NA)

306

307 PPV. i n t <− XMIX. no . i n t [ , 1 : 2 ]

308

309 #Perform 10 f o l d c r o s s v a l i d a t i o n

310 f o r ( i in 1 : 10 ) {
311 #Segement your data by f o l d us ing the which ( ) func t i on

312 t e s t I ndexe s <− which ( f o l d s==i , a r r . ind=TRUE)

313 testData <− XMIX. i n t [ t e s t Indexe s , ]

314 tra inData <− XMIX. i n t [− t e s t Indexe s , ]

315 tes tResponse <− yMIX[ t e s t I ndexe s ]

316 t ra inResponse <− yMIX[− t e s t I ndexe s ]

317

318

319 L <− optim ( 0 . 1 , n eg l l h . y , X=trainData , y=trainResponse , method=”Brent” , lower =0.001 ,

upper=10, he s s i an=T)

320

321 L opt <− L$par

322

323 params <− post . param (2 ,2 ,L opt , tra inData , t ra inResponse )

324

325 beta n <− params [ [ 1 ] ]

326

327 Sigma n <− params [ [ 2 ] ]

328

329 a n <− params [ [ 3 ] ]

330

331 b n <− params [ [ 4 ] ]

332

333 testData $pred <− as . matrix ( testData )%∗%as . matrix ( beta n)

334

335 MSE. shrunk [ i , 2 ] <− (1 / l ength ( testResponse ) ) ∗ sum( ( testResponse − testData $pred ) ˆ2

)

336

337 Evidence . shrunk [ i , 2 ] <− Evidence (X = testData , y = testResponse , c ( 1 : nco l ( testData ) )

, a 0 , b 0 , lambda = L opt )

338

339 t e s t . ppv = 0

340

341 f o r ( j in 1 : l ength ( testResponse ) ) {
342

343 sd = (b n/a n ∗ (1 + as . matrix ( testData [ j ,−66]) %∗% Sigma n %∗% t ( as . matrix (

testData [ j ,−66]) ) ) ) ˆ0 .5

344
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345 t e s t . ppv [ j ] = min (pnorm( testResponse [ j ] , testData $pred [ j ,−66] , sd ) , 1−pnorm(

testResponse [ j ] , testData $pred [ j ,−66] , sd ) )

346

347 }
348

349 PPV. i n t [ t e s t Indexe s , 1 ] <− t e s t . ppv

350

351 }
352

353 names (PPV. i n t ) [ 1 : 2 ] <− c ( ”P−va lue s ” , ” Out l i e r ?” )

354

355 f o r ( i in 1 : nrow (PPV. i n t ) ) {
356 i f (PPV. i n t [ i , 1 ] < 0 . 05 ) {PPV. i n t [ i , 2 ] = TRUE} e l s e {PPV. i n t [ i , 2 ] = FALSE}
357 }
358 summary( as . f a c t o r (PPV. i n t [ , 2 ] ) )

359

360 ########## AIC/Ridge Model ( Ridge , L = L opt ) ##########

361

362 MSE.AIC .R <− data . frame (Run = 1 :10 , MSE = NA)

363

364 Evidence .AIC .R <− data . frame (Run = 1 :10 , Evidence = NA)

365

366 AIC .X. no . i n t <− XMIX. no . i n t [ , Covar iate s .AIC ]

367

368 PPV.AIC .R <− AIC .X. no . i n t [ , 1 : 2 ]

369

370 #Perform 10 f o l d c r o s s v a l i d a t i o n

371 f o r ( i in 1 : 10 ) {
372 #Segement your data by f o l d us ing the which ( ) func t i on

373 t e s t I ndexe s <− which ( f o l d s==i , a r r . ind=TRUE)

374 testData <− AIC .X. no . i n t [ t e s t Indexe s , ]

375 tra inData <− AIC .X. no . i n t [− t e s t Indexe s , ]

376 tes tResponse <− yMIX[ t e s t I ndexe s ]

377 t ra inResponse <− yMIX[− t e s t I ndexe s ]

378

379

380 L <− optim ( 0 . 1 , n eg l l h . y , X=trainData , y=trainResponse , method=”Brent” , lower =0.001 ,

upper=10, he s s i an=T)

381

382 L opt <− L$par

383

384 params <− post . param (2 ,2 ,L opt , tra inData , t ra inResponse )

385

386 beta n <− params [ [ 1 ] ]

387

388 Sigma n <− params [ [ 2 ] ]

389

390 a n <− params [ [ 3 ] ]

391

392 b n <− params [ [ 4 ] ]

393

394 testData $pred <− mean( testResponse ) + as . matrix ( testData )%∗%as . matrix ( beta n)

395

396 MSE.AIC .R[ i , 2 ] <− (1 / l ength ( testResponse ) ) ∗ sum( ( testResponse − testData $pred ) ˆ2 )

397

398 Evidence .AIC .R[ i , 2 ] <− Evidence (X = testData , y = testResponse , c ( 1 : nco l ( testData ) ) ,

a 0 , b 0 , lambda = L opt )

399

400 t e s t . ppv = 0

401
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402 f o r ( j in 1 : l ength ( testResponse ) ) {
403

404 sd = (b n/a n ∗ (1 + as . matrix ( testData [ j ,−nco l ( testData ) ] ) %∗% Sigma n %∗% t ( as .

matrix ( testData [ j ,−nco l ( testData ) ] ) ) ) ) ˆ0 .5

405

406 t e s t . ppv [ j ] = min (pnorm( testResponse [ j ] , testData $pred [ j ,−nco l ( testData ) ] , sd ) , 1−
pnorm( testResponse [ j ] , testData $pred [ j ,−nco l ( testData ) ] , sd ) )

407

408 }
409

410 PPV.AIC .R[ t e s t Indexe s , 1 ] <− t e s t . ppv

411

412 }
413

414 names (PPV.AIC .R) [ 1 : 2 ] <− c ( ”P−va lue s ” , ” Out l i e r ?” )

415

416 f o r ( i in 1 : nrow (PPV.BIC .R) ) {
417 i f (PPV.AIC .R[ i , 1 ] < 0 . 05 ) {PPV.AIC .R[ i , 2 ] = TRUE} e l s e {PPV.AIC .R[ i , 2 ] = FALSE}
418 }
419 summary( as . f a c t o r (PPV.AIC .R[ , 2 ] ) )

420

421

422 ########## BIC/Ridge Model ( Ridge , L = L opt ) ##########

423

424 MSE.BIC .R <− data . frame (Run = 1 :10 , MSE = NA)

425

426 Evidence . BIC .R <− data . frame (Run = 1 :10 , Evidence = NA)

427

428 BIC .X. no . i n t <− XMIX. no . i n t [ , Covar iate s . BIC ]

429

430 PPV.BIC .R <− AIC .X. no . i n t [ , 1 : 2 ]

431

432 #Perform 10 f o l d c r o s s v a l i d a t i o n

433 f o r ( i in 1 : 10 ) {
434 #Segement your data by f o l d us ing the which ( ) func t i on

435 t e s t I ndexe s <− which ( f o l d s==i , a r r . ind=TRUE)

436 testData <− BIC .X. no . i n t [ t e s t Indexe s , ]

437 tra inData <− BIC .X. no . i n t [− t e s t Indexe s , ]

438 tes tResponse <− yMIX[ t e s t I ndexe s ]

439 t ra inResponse <− yMIX[− t e s t I ndexe s ]

440

441

442 L <− optim ( 0 . 1 , n eg l l h . y , X=trainData , y=trainResponse , method=”Brent” , lower =0.001 ,

upper=10, he s s i an=T)

443

444 L opt <− L$par

445

446 params <− post . param (2 ,2 ,L opt , tra inData , t ra inResponse )

447

448 beta n <− params [ [ 1 ] ]

449

450 Sigma n <− params [ [ 2 ] ]

451

452 a n <− params [ [ 3 ] ]

453

454 b n <− params [ [ 4 ] ]

455

456 testData $pred <− mean( testResponse ) + as . matrix ( testData )%∗%as . matrix ( beta n)

457

458 MSE.BIC .R[ i , 2 ] <− (1 / l ength ( testResponse ) ) ∗ sum( ( testResponse − testData $pred ) ˆ2 )
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459

460 Evidence . BIC .R[ i , 2 ] <− Evidence (X = testData , y = testResponse , c ( 1 : nco l ( testData ) ) ,

a 0 , b 0 , lambda = L opt )

461

462 t e s t . ppv = 0

463

464 f o r ( j in 1 : l ength ( testResponse ) ) {
465

466 sd = (b n/a n ∗ (1 + as . matrix ( testData [ j ,−nco l ( testData ) ] ) %∗% Sigma n %∗% t ( as .

matrix ( testData [ j ,−nco l ( testData ) ] ) ) ) ) ˆ0 .5

467

468 t e s t . ppv [ j ] = min (pnorm( testResponse [ j ] , testData $pred [ j ,−nco l ( testData ) ] , sd ) , 1−
pnorm( testResponse [ j ] , testData $pred [ j ,−nco l ( testData ) ] , sd ) )

469

470 }
471

472 PPV.BIC .R[ t e s t Indexe s , 1 ] <− t e s t . ppv

473

474 }
475

476 names (PPV.BIC .R) [ 1 : 2 ] <− c ( ”P−va lue s ” , ” Out l i e r ?” )

477

478 f o r ( i in 1 : nrow (PPV.BIC .R) ) {
479 i f (PPV.BIC .R[ i , 1 ] < 0 . 05 ) {PPV.BIC .R[ i , 2 ] = TRUE} e l s e {PPV.BIC .R[ i , 2 ] = FALSE}
480 }
481 summary( as . f a c t o r (PPV.BIC .R[ , 2 ] ) )

482

483

484

485 ########## AIC/Ridge . i n t Model ( Ridge , L = L opt ) ##########

486

487 MSE.AIC .R. i n t <− data . frame (Run = 1 :10 , MSE = NA)

488

489 Evidence .AIC .R. i n t <− data . frame (Run = 1 :10 , Evidence = NA)

490

491 AIC .X. i n t <− XMIX. i n t [ , c (1 , Covar iates .AIC+1) ]

492

493 PPV.AIC .R. i n t <− AIC .X. i n t [ , 1 : 2 ]

494

495 #Perform 10 f o l d c r o s s v a l i d a t i o n

496 f o r ( i in 1 : 10 ) {
497 #Segement your data by f o l d us ing the which ( ) func t i on

498 t e s t I ndexe s <− which ( f o l d s==i , a r r . ind=TRUE)

499 testData <− AIC .X. i n t [ t e s t Indexe s , ]

500 tra inData <− AIC .X. i n t [− t e s t Indexe s , ]

501 tes tResponse <− yMIX[ t e s t I ndexe s ]

502 t ra inResponse <− yMIX[− t e s t I ndexe s ]

503

504

505 L <− optim ( 0 . 1 , n eg l l h . y , X=trainData , y=trainResponse , method=”Brent” , lower =0.001 ,

upper=10, he s s i an=T)

506

507 L opt <− L$par

508

509 params <− post . param (2 ,2 ,L opt , tra inData , t ra inResponse )

510

511 beta n <− params [ [ 1 ] ]

512

513 Sigma n <− params [ [ 2 ] ]

514



BAYESIAN RIDGE REGRESSION: AN OVERVIEW AND COMPARISON TO CLASSICAL REGRESSION. 19

515 a n <− params [ [ 3 ] ]

516

517 b n <− params [ [ 4 ] ]

518

519 testData $pred <− as . matrix ( testData )%∗%as . matrix ( beta n)

520

521 MSE.AIC .R. i n t [ i , 2 ] <− (1 / l ength ( testResponse ) ) ∗ sum( ( testResponse − testData $pred )

ˆ2 )

522

523 Evidence .AIC .R. i n t [ i , 2 ] <− Evidence (X = testData , y = testResponse , c ( 1 : nco l (

testData ) ) , a 0 , b 0 , lambda = L opt )

524

525 t e s t . ppv = 0

526

527 f o r ( j in 1 : l ength ( testResponse ) ) {
528

529 sd = (b n/a n ∗ (1 + as . matrix ( testData [ j ,−nco l ( testData ) ] ) %∗% Sigma n %∗% t ( as .

matrix ( testData [ j ,−nco l ( testData ) ] ) ) ) ) ˆ0 .5

530

531 t e s t . ppv [ j ] = min (pnorm( testResponse [ j ] , testData $pred [ j ,−nco l ( testData ) ] , sd ) , 1−
pnorm( testResponse [ j ] , testData $pred [ j ,−nco l ( testData ) ] , sd ) )

532

533 }
534

535 PPV.AIC .R. i n t [ t e s t Indexe s , 1 ] <− t e s t . ppv

536

537 }
538

539 names (PPV.AIC .R. i n t ) [ 1 : 2 ] <− c ( ”P−va lue s ” , ” Out l i e r ?” )

540

541 f o r ( i in 1 : nrow (PPV.AIC .R. i n t ) ) {
542 i f (PPV.AIC .R. i n t [ i , 1 ] < 0 . 05 ) {PPV.AIC .R. i n t [ i , 2 ] = TRUE} e l s e {PPV.AIC .R. i n t [ i , 2 ] =

FALSE}
543 }
544 summary( as . f a c t o r (PPV.AIC .R. i n t [ , 2 ] ) )

545

546

547

548 ########## BIC/Ridge . i n t Model ( Ridge , L = L opt ) ##########

549

550 MSE.BIC .R. i n t <− data . frame (Run = 1 :10 , MSE = NA)

551

552 Evidence . BIC .R. i n t <− data . frame (Run = 1 :10 , Evidence = NA)

553

554 BIC .X. i n t <− XMIX. i n t [ , c (1 , Covar iates . BIC+1) ]

555

556 PPV.BIC .R. i n t <− BIC .X. i n t [ , 1 : 2 ]

557

558 #Perform 10 f o l d c r o s s v a l i d a t i o n

559 f o r ( i in 1 : 10 ) {
560 #Segement your data by f o l d us ing the which ( ) func t i on

561 t e s t I ndexe s <− which ( f o l d s==i , a r r . ind=TRUE)

562 testData <− BIC .X. i n t [ t e s t Indexe s , ]

563 tra inData <− BIC .X. i n t [− t e s t Indexe s , ]

564 tes tResponse <− yMIX[ t e s t I ndexe s ]

565 t ra inResponse <− yMIX[− t e s t I ndexe s ]

566

567

568 L <− optim ( 0 . 1 , n eg l l h . y , X=trainData , y=trainResponse , method=”Brent” , lower =0.001 ,

upper=10, he s s i an=T)
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569

570 L opt <− L$par

571

572 params <− post . param (2 ,2 ,L opt , tra inData , t ra inResponse )

573

574 beta n <− params [ [ 1 ] ]

575

576 Sigma n <− params [ [ 2 ] ]

577

578 a n <− params [ [ 3 ] ]

579

580 b n <− params [ [ 4 ] ]

581

582 testData $pred <− as . matrix ( testData )%∗%as . matrix ( beta n)

583

584 MSE.BIC .R. i n t [ i , 2 ] <− (1 / l ength ( testResponse ) ) ∗ sum( ( testResponse − testData $pred

) ˆ2 )

585

586 Evidence . BIC .R. i n t [ i , 2 ] <− Evidence (X = testData , y = testResponse , c ( 1 : nco l (

testData ) ) , a 0 , b 0 , lambda = L opt )

587

588 t e s t . ppv = 0

589

590 f o r ( j in 1 : l ength ( testResponse ) ) {
591

592 sd = (b n/a n ∗ (1 + as . matrix ( testData [ j ,−nco l ( testData ) ] ) %∗% Sigma n %∗% t ( as .

matrix ( testData [ j ,−nco l ( testData ) ] ) ) ) ) ˆ0 .5

593

594 t e s t . ppv [ j ] = min (pnorm( testResponse [ j ] , testData $pred [ j ,−nco l ( testData ) ] , sd ) , 1−
pnorm( testResponse [ j ] , testData $pred [ j ,−nco l ( testData ) ] , sd ) )

595

596 }
597

598 PPV.BIC .R. i n t [ t e s t Indexe s , 1 ] <− t e s t . ppv

599

600 }
601

602 names (PPV.BIC .R. i n t ) [ 1 : 2 ] <− c ( ”P−va lue s ” , ” Out l i e r ?” )

603

604 f o r ( i in 1 : nrow (PPV.BIC .R. i n t ) ) {
605 i f (PPV.BIC .R. i n t [ i , 1 ] < 0 . 05 ) {PPV.BIC .R. i n t [ i , 2 ] = TRUE} e l s e {PPV.BIC .R. i n t [ i , 2 ] =

FALSE}
606 }
607 summary( as . f a c t o r (PPV.BIC .R. i n t [ , 2 ] ) )

608

609

610 ########## Model Comparison ##########

611

612 MSE. compare <− f unc t i on ( ) {
613 MSE <− data . frame ( f o l d = 1 :10 , Fu l l = MSE. f u l l [ , 2 ] , Ridge = MSE. shrunk [ , 2 ] , Ridge .

i n t = MSE. r i dge . i n t [ , 2 ] , AIC = MSE.AIC [ , 2 ] ,

614 BIC = MSE.BIC [ , 2 ] , Ridge . glmnet = MSE. Ridge . auto [ , 2 ] , Ridge .MASS =

MSE. Ridge . auto .MASS[ , 2 ] ,

615 AIC . Ridge = MSE.AIC .R[ , 2 ] , BIC . Ridge = MSE.BIC .R[ , 2 ] , AIC . Ridge . i n t

= MSE.AIC .R. i n t [ , 2 ] , BIC . Ridge . i n t = MSE.BIC .R. i n t [ , 2 ] )

616

617 MSE[ 1 1 , 1 ] <− ”Avg . ”

618 MSE[ 1 1 , 2 ] <− mean(MSE[ 1 : 1 0 , 2 ] )

619 MSE[ 1 1 , 3 ] <− mean(MSE[ 1 : 1 0 , 3 ] )

620 MSE[ 1 1 , 4 ] <− mean(MSE[ 1 : 1 0 , 4 ] )
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621 MSE[ 1 1 , 5 ] <− mean(MSE[ 1 : 1 0 , 5 ] )

622 MSE[ 1 1 , 6 ] <− mean(MSE[ 1 : 1 0 , 6 ] )

623 MSE[ 1 1 , 7 ] <− mean(MSE[ 1 : 1 0 , 7 ] )

624 MSE[ 1 1 , 8 ] <− mean(MSE[ 1 : 1 0 , 8 ] )

625 MSE[ 1 1 , 9 ] <− mean(MSE[ 1 : 1 0 , 9 ] )

626 MSE[ 1 1 , 1 0 ] <− mean(MSE[ 1 : 1 0 , 1 0 ] )

627 MSE[ 1 1 , 1 1 ] <− mean(MSE[ 1 : 1 0 , 1 1 ] )

628 MSE[ 1 1 , 1 2 ] <− mean(MSE[ 1 : 1 0 , 1 2 ] )

629

630 MSE[ 1 2 , 1 ] <− ”SD”

631 MSE[ 1 2 , 2 ] <− sd (MSE[ 1 : 1 0 , 2 ] )

632 MSE[ 1 2 , 3 ] <− sd (MSE[ 1 : 1 0 , 3 ] )

633 MSE[ 1 2 , 4 ] <− sd (MSE[ 1 : 1 0 , 4 ] )

634 MSE[ 1 2 , 5 ] <− sd (MSE[ 1 : 1 0 , 5 ] )

635 MSE[ 1 2 , 6 ] <− sd (MSE[ 1 : 1 0 , 6 ] )

636 MSE[ 1 2 , 7 ] <− sd (MSE[ 1 : 1 0 , 7 ] )

637 MSE[ 1 2 , 8 ] <− sd (MSE[ 1 : 1 0 , 8 ] )

638 MSE[ 1 2 , 9 ] <− sd (MSE[ 1 : 1 0 , 9 ] )

639 MSE[ 1 2 , 1 0 ] <− sd (MSE[ 1 : 1 0 , 1 0 ] )

640 MSE[ 1 2 , 1 1 ] <− sd (MSE[ 1 : 1 0 , 1 1 ] )

641 MSE[ 1 2 , 1 2 ] <− sd (MSE[ 1 : 1 0 , 1 2 ] )

642

643 re turn (MSE)

644 }
645

646 Evi . compare <− f unc t i on ( ) {
647 Evi <− data . frame ( f o l d = 1 :10 , Fu l l = Evidence . f u l l [ , 2 ] , Ridge = Evidence . shrunk

[ , 2 ] , Ridge . i n t = Evidence . r i dg e . i n t [ , 2 ] , AIC = Evidence .AIC [ , 2 ] ,

648 BIC = Evidence . BIC [ , 2 ] , Ridge . auto = Evidence . Ridge . auto [ , 2 ] ,

Ridge .MASS = Evidence . Ridge . auto .MASS[ , 2 ] ,

649 AIC . Ridge = Evidence .AIC .R[ , 2 ] , BIC . Ridge = Evidence . BIC .R[ , 2 ] ,

AIC . Ridge . i n t = Evidence .AIC .R. i n t [ , 2 ] , BIC . Ridge . i n t = Evidence . BIC .R. i n t [ , 2 ] )

650

651 Evi [ 1 1 , 1 ] <− ”Avg . ”

652 Evi [ 1 1 , 2 ] <− mean( Evi [ 1 : 1 0 , 2 ] )

653 Evi [ 1 1 , 3 ] <− mean( Evi [ 1 : 1 0 , 3 ] )

654 Evi [ 1 1 , 4 ] <− mean( Evi [ 1 : 1 0 , 4 ] )

655 Evi [ 1 1 , 5 ] <− mean( Evi [ 1 : 1 0 , 5 ] )

656 Evi [ 1 1 , 6 ] <− mean( Evi [ 1 : 1 0 , 6 ] )

657 Evi [ 1 1 , 7 ] <− mean( Evi [ 1 : 1 0 , 7 ] )

658 Evi [ 1 1 , 8 ] <− mean( Evi [ 1 : 1 0 , 8 ] )

659 Evi [ 1 1 , 9 ] <− mean( Evi [ 1 : 1 0 , 9 ] )

660 Evi [ 1 1 , 1 0 ] <− mean( Evi [ 1 : 1 0 , 1 0 ] )

661 Evi [ 1 1 , 1 1 ] <− mean( Evi [ 1 : 1 0 , 1 1 ] )

662 Evi [ 1 1 , 1 2 ] <− mean( Evi [ 1 : 1 0 , 1 2 ] )

663

664 Evi [ 1 2 , 1 ] <− ”SD”

665 Evi [ 1 2 , 2 ] <− sd ( Evi [ 1 : 1 0 , 2 ] )

666 Evi [ 1 2 , 3 ] <− sd ( Evi [ 1 : 1 0 , 3 ] )

667 Evi [ 1 2 , 4 ] <− sd ( Evi [ 1 : 1 0 , 4 ] )

668 Evi [ 1 2 , 5 ] <− sd ( Evi [ 1 : 1 0 , 5 ] )

669 Evi [ 1 2 , 6 ] <− sd ( Evi [ 1 : 1 0 , 6 ] )

670 Evi [ 1 2 , 7 ] <− sd ( Evi [ 1 : 1 0 , 7 ] )

671 Evi [ 1 2 , 8 ] <− sd ( Evi [ 1 : 1 0 , 8 ] )

672 Evi [ 1 2 , 9 ] <− sd ( Evi [ 1 : 1 0 , 9 ] )

673 Evi [ 1 2 , 1 0 ] <− sd ( Evi [ 1 : 1 0 , 1 0 ] )

674 Evi [ 1 2 , 1 1 ] <− sd ( Evi [ 1 : 1 0 , 1 1 ] )

675 Evi [ 1 2 , 1 2 ] <− sd ( Evi [ 1 : 1 0 , 1 2 ] )

676

677 re turn ( Evi )
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678 }
679

680 MSE <− MSE. compare ( )

681 Evi <− Evi . compare ( )
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