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ABSTRACT

Classical methods of linear regression model building suffer when the data set is subject to mul-
ticollinearity. Ridge regression is one alternative to classical methods that can alleviate this issue.
In this paper we aim to explain the theory behind Ridge regression from a Bayesian perspective and
suggest why one might use Ridge regression over classical methods. Then, using an exemplar data
set on Diabetes provided by Efron et al. (2003) 2l we construct a series of classical and Ridge models
and compare their effectiveness, including an extension to a selection of ‘hybrid” models. We found
that, for this data set, the classical subset models were better at the prediction of new data than
the Ridge models, but suggest situations in which the Ridge models may be preferable. We also
suggest considering other methods such as LASSO regression, Principle Component regression and
Least Angle regression B4

1. INTRODUCTION

Classical methods of regression model building, such as subset selection, are common place in
many fields. They do, however, have their flaws. Classical methods of coefficient estimation suffer
greatly when multicollinearity is present in a data set. The coefficient estimates can become unstable,
anomalously large, and are subject to extreme changes when covariates are selected to be removed
or added, even changing sign in some casesB4 . Ridge regression is known as a shrinkage method,
and aims to alleviate this issue by applying a penalty to the size of the coefficients ¥4, The result is
that the coefficient estimates are shrunk towards zero and each other, which introduces a bias, but
reduces their variance B4, If this relationship is correctly balanced, which is regulated by a shrinkage
parameter, A, then using Ridge regression can lead to a reduction in the Mean Squared Error of the
model. The original motivation for Ridge regression when it was first introduced by Hoerl & Kennard
(1970) I was to make XTX in the equation for the Ordinary Least Squares coefficient estimates have
full rank, even if two covariates were perfectly correlated, allowing it to be inverted. This is done by
adding a positive constant, A, to the diagonal of X TX before inversion. This simple augmentation
gives the Ridge coefficient estimates, Brldge. In fact, in the case of orthonormal inputs, the Ridge

~rid A .
coefficient estimates are just scaled versions of the Ordinary Least Squares estimates, ﬁn B (liﬁ Bl

During this paper we will be considering an exemplar data set to examine the application and effect of
Ridge regression compared to classical methods. The data set, as described in Efron et al. (2003) 2
details 10 baseline covariates; age, sex, body mass index, average blood pressure, and 6 blood serum
measurements, which relate to a response variable, y¥; a quantitative measure of disease progression
one year after baseline. The data set then also includes covariates which represent the quadratic
interactions for all these variables, giving a total of 64 covariates. The data set contains observations
for 442 unique individuals, with no missing data. The covariates have been centred, and scaled to
have ¢?—norm. In this paper we aim to explain the concepts, theory and motivation behind Ridge
regression from a Bayesian perspective, and then compare it to a range of classical models using our
exemplar data set. We wish to compare the models based on their ability to predict new data and

the "Evidence’ for each model given the data. In §2] we derive how the Ridge coefficient estimates,
~rid
,Bn ge, are calculated from a Bayesian perspective, and how these are then used to make predictions

on new data. We then give a brief overview of some of the tools used to build the classical models,
and then a consideration of why we would choose to use Ridge regression in place of classical methods,
and suggest some points to consider when performing Ridge regression. We then explain how we will
compare the models, including how the "Evidence’ and Mean Squared Error are calculated, and some
diagnostics that can be performed on the Ridge regression models. In we present the results of
our model building and perform some basic comparisons and analysis. We then offer some extensions
of the models, and show how they compare to their associated counterparts. In §4] we discuss the
models in more depth, and consider other aspects which could make one model preferable to another,
before making suggestions on extensions that could be considered and concluding the paper in
1
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2. THEORY AND METHODOLOGY

Ridge regression is an example of a shrinkage method of model fitting, an alternative to classical
methods such as subset selection. Ridge regression works by shrinking the coefficient estimates towards
zero, and each other, by applying a penalty to their size B4l From a frequentist point of view, the

. . ~ridge C . . ! .
Ridge coefficients, 8 , are chosen to minimise a residual sum of squares =4 given by:

RSS(A) = (y — XB)" (y — XB) + \8"B, (1)

for which the solution is "

ﬂrl ge _ (XTX + AIp)fley’ (2)
where I, is a p X p identity matrix, X is a matrix of covariate observations (excluding the intercept), y
is a vector of the observed response variable, and A > 0 is known as the shrinkage parameter. Larger

7 ., prid P .

values of lambda lead to greater shrinkage of the Ridge coefficients ¥4 with ﬂn 5= B, the Ordinary
~rid

Least Squares estimates from classical regression, when A = 0 and ,Bn 5 5 0as )\ — oo.

Ridge regression can also be considered from a Bayesian point of view. In this case the estimates
of the Ridge coefficients can be derived as the mean or mode of the marginal posterior distribution
of B, when the prior placed on 8 is MVN,(0, X) B4 where ¥ is a diagonal matrix, so the B;ldge’s are
independent, for j in (1,...,p), where p is the number of parameters in the model. We will now show
how this result is derived.

For a given data set, let the response variable be denoted by a 1 x n matrix (column vector)

Y = [y1,---,Yn)T, which is explained by an n x p matrix of covariates X = [z1,...,7,] and a 1 x p
matrix (column vector) of regression coefficients 8 = [f1, ..., [3’p]T. The observations of the response
variable can be expressed as a multivariate distribution:
y|7,B ~ MVN,(XB, 11,) (3)
where % is the variance of residuals. Thus the likelihood is given by:
n T
fyir.B) <7 exp (~S(y — XB) (y — XB)) (4)
As described, we now place a prior on 8, and also on 7:
1
Blr ~N <,30, Zo) . 7~ Gamma(ag, bo), (5)
T

and we let ag = bg = 2 to make the prior on 7 uninformative, and set 8y = 0. Our goal is to find
the marginal posterior distributions of 8 and 7, as well as the posterior predictive distribution of the
data. To do this, we first need to find the marginal likelihood (conditional on 7) of the data, which
can be shown to be:

ol7 ~ N (XBo, (1, + XZox")) ©)

the proof of which is given in Appendix[6.1} Thus, by integrating out 7, we can show that the marginal
likelihood for the data (also known as the ‘Evidence’) can be expressed as:

b
Yy~ MVTZao (X,B07 aio(ln + XZOXT)> s (7)
0

the proof of which is given in Appendix
We now consider a special case of a fully conjugate prior, known as a Ridge prior. The Ridge prior
is given by:

B~ MVN,(0, ), ®)

where A is known as the shrinkage parameter, which is fixed but unknown. In a Bayesian setting
we can estimate A by considering a range of values, and choosing the value that maximises the (log-
)likelihood of the data. This is known as empirical Bayes. By combining the likelihood with the
Ridge prior on 8 and the prior on 7 , we show in Appendix that the marginal posterior

distributions are given by:

by
Bly ~ MVTy,, <ﬂn, a2n> , Tly ~ Gammal(ay,, by ), 9)

n
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where
Bn=(X"X + 1,0 XTy, S = (XTX + L)),
1
an:a0+gv bn:b0+§(yT'y_ﬂ£E7_Ll,Bn)-

It can also be shown that the posterior predictive distribution for a vector of predictions y* given a
set of covariates X™* is given by

b

Y| X* ~ MVTy,, (X*Bn, a—"(In + X*an*T)) : (10)
n

Thus we can see that if we wish to make a prediction y* from a set of covariates X*, this would just be

the mean of the posterior predictive distribution of the data, X*B,, where B,, is the posterior mode

(and mean) of 8. Thus the Bayesian approach agrees with the frequentist approach, and the Ridge

coefficients are given by:
~ridge

B
2.1. Classical Models. We wish to compare how well a Bayesian Ridge regression model compares
to a range of classical regression models. The first model we wish to fit is the ‘full’ model. In this
model no variable selection is implemented, and the coefficient estimates are computed in the classical
sense using iteratively re-weighted least squares .
The second classic model we wish to consider is one that uses step-wise variable selection ¥4 using
the Akaike Information Criterion (AIC)B# which we will denote the ‘AIC’ model. The AIC is a
measure of the fit and parsimony of a regression model. It is defined as:

AIC = —20(z) + 2d, (12)

where £(z) is the log-likelihood of the data z, and d is the number of parameters in the model. The
model with the lowest AIC is considered to be the most parsimonious best fitting model. The AIC
has the benefit that the models do not have to be nested. We use the AIC during step-wise variable
selection as the metric by which to judge if a parameter is removed or added to the model.

Our third classic model will again be using step-wise variable selection, this time with the Bayes
Information Criterion (BIC)B# and we denote it the ‘BIC’ model. The BIC is an alternative to the
AIC. Tt is defined as:

= Bn = (XTX + L) 'XTy. (11)

BIC = —2{(z) + log(N)d, (13)
where ¢(x) is the log-likelihood of the data x, d is the number of parameters in the model, and N is
number of observations in the data. Similarly to the AIC, the model with the lowest BIC is considered
to be the most parsimonious best fitting model, and has the benefit that the models being compared
do not have to be nested. In general, the BIC penalises models with more parameters more than the
AIC, since log(N) > 2 in most cases, thus the BIC aims for more parsimonious models.

2.2. Why use Ridge regression? Classical linear regression does not fare well when the input
data suffers from multicollinearity. Multicollinearity occurs when variables are highly correlated B,
for example, if two variables measure the same thing on two different scales (say height in meters and
inches) they will be highly correlated. This means that the design matrix, X, will not have full rank
(or will be very close to having not full rank). This means that, due to the way the Ordinary Least
Squares estimates are calculated, the coefficient estimates will be unstable (also called being poorly
determined or defined) and will exhibit high variance B4l For instance, one covariate may have an
anomalously large positive coefficient, which in every instance will be cancelled by an anomalously
large negative coeflicient of the covariate it is highly correlated with. Removing one of these covariates
from the model will lead the other’s coefficient to change drastically, possibly even changing sign. By
applying a penalty to the size of the coeflicients, Ridge regression alleviates this problem. This works
because a positive constant is added to the diagonal of the design matrix, meaning that it gains full
rank (becomes non-singular and has an inverse) B4,

However, Ridge regression is not guaranteed to be better than classical regression in every instance.
~1id o
The Ridge coefficients are biased, E[,Bn ge] # B, whereas the classical coefficient estimates B are not B!,

Since the Mean Squared Error = bias® + Variance, for the Ridge model to improve on the accuracy
of the classical model, the bias gained must be outweighed by the reduction in the variance. In cases
where multicollinearity is not an issue, the Ridge estimates can add bias while making negligible
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difference to the variance, and as such the MSE will increase. In addition, where as the Ordinary
Least Squares coefficient estimates are invariant under scaling, the Ridge coefficient estimates are
not B4 This means that multiplying covariate X j by a constant c simply scales the OLS estimates
by a factor of % (equivalently, regardless of what value ¢ takes, X ; Bj remains the same) M. This is not
true for the Ridge coefficient estimates, which can change dramatically when the associated covariate
is scaled. This is due to the quadratic penalty term in , which causes each B]r-ldge to not only be
dependent on the scaling of their associated covariate, but also on A, and the value of the other ridge
coefficients . For this reason it is not uncommon to scale and centre the data before calculating
[3¢4)

Bridge 4. Also notice how the intercept coefficient is not included in and is not penalised. After

scaling and centring the data, we estimate the intercept by Béidge =i = %Zf\;l y; B4

2.3. Comparing models. One way of comparing models is calculate the ‘Evidence’ for each one.
The model with the greatest ‘Evidence’ is considered to be the most appropriate for the data. We
showed in §2| that the marginal likelihood of the data is given by:

b
Yy~ MVT2a0 (X,B07 aio(ln + XZOXT)> 5 (14)
0

where X a matrix of covariates, 8o =0, I, is an n X n identity matrix, and ¥y = %Ip, where I, is a
p X p identity matrix. Given a data set X and response data y we can calculate the evidence (marginal
likelihood) of the model via:

v4p
(y — XBo)" 2 (y - Xﬁo)] 2

v

v+ v
Evidence = f(y) = F(Tp)r(ﬁ)

[1 + (15)

1 p
DY

where v = 2ag, p is the number of parameters in the data, and ¥ = Z—%(In +X%XT).

An alternative to the ‘Evidence’ is to consider how well the model predicts new data, which in
many circumstances is often the most important factor in choosing a final model. Many different
types of models have many different types of tests for the predictivity of a model. We have chosen to
calculate the Mean Squared Error (MSE) B4l for prediction for each model, and the model that has
the lowest MSE will be the best at predicting. We can calculate the MSE via:

n

where n is the number of predicted data points, y; is the known response value for a given set of
observations z;, and y; is the predicted response value for the same set of observations. The MSE
calculates an average of the squared distance between the true and predicted response values; the
lower the MSE, the closer the predicted and true response values, thus the better the fit of the model.

To calculate the out of sample predictivity we need to test how well our fitted model predicts new
data. To did this we will use k-fold cross validation ¥ with the Mean Squared Error. We first divide
the data into k£ equal sets, where we have chosen k£ = 10, we then choose one set to be a ‘test set’ and
use the other nine sets to train the model. This trained model is then used to predict the test set,
and calculate the MSE. We repeat this procedure ten times, selecting a new set to be the ‘test set’
each time. This can give us a good idea about how well our chosen model predicts for new data.

Another aspect of the fit of the Ridge regression model we can consider is how many of the true
response values are outliers (in each test set of our 10-fold cross validation) given our assumed posterior
predictive distribution, as given in . If the probability of seeing the true value of our response
variable under the posterior predictive distribution is < 0.05 then this point in an outlier; it is unlikely
to be drawn from the given posterior predictive distribution.

3. RESULTS AND ANALYSIS

Initially 4 models were produced, the ‘full’, ‘AIC’, ‘BIC’, and ‘Ridge’ models, as described in §2
We also considered a Ridge regression model where the intercept was penalised, which we denote
‘Ridge.int’. Since we have utilised 10-fold cross validation, fitted model parameters and example
predictions that are referenced in this section are associated with models fitted with the full data set.

By considering a range of values for the shrinkage parameter, A\, we found the value that gave
the strongest evidence for the ‘Ridge’ regression model (the one which maximised the value of the
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marginal likelihood). This value was Aopt = 2.7786 which was calculated using all the data, however,
a new optimal lambda was calculated for each data set when doing cross validation. We can see from
Figure [1] that this was a global maxima. Similarly, for the ‘Ridge.int” model Aqp; = 0.1475.

The Evidence evaluated at different values of A The Evidence evaluated at different values of A

-2914.42
1 1

log(Likelihood)
-2914.46
1

log(Likelihood)
-3200 -3150 -3100 -3050 -3000 -2950

-2914.50

T T T T T T T T T T T T
26 2.8 3.0 3.2 34 0 1 2 3 4 5 6

A A

(a) (B)

F1GUuRE 1. The Evidence of the ‘Ridge’ model (the intercept not penalised) evaluated at different
values of \: (A) A zoomed plot to show the value of A that maximises the Evidence for the ‘Ridge’
model. (B) A plot that shows the chosen value of lambda is a global maxima.

The models were compared on how large the ‘Evidence’ for each model was, assessed using the
marginal log-likelihood, and how well each model predicted new data, assessed using 10-fold cross val-
idation with Mean Squared Error. As we can see from Table |1} the ‘Ridge.int’ model (closely followed
by the ‘Ridge’ model) had the highest log(evidence) with a value of -264.92 (-265.76 respectively) and
the ‘AIC’ model had the lowest with a value of -568.23, a substantial difference of almost 300. In
contradiction, the ‘BIC’ model had the lowest the average MSE value with a value of 2788.55, and
the ’full’ model had the highest with a value of 3903.22. Lower values of the evidence were associated
with both the highest MSE (the ‘full’ model) and the lowest MSE (the ‘BIC’ model).

Model | Avg. MSE | MSE Std. Dev. | Avg. Log(Evidence) | Log(Evidence) Std. Dev.
Full 3903.22 1088.83 -544.59 5.43
Ridge 3807.29 556.66 -265.76 3.43
Ridge.int 3163.24 587.02 -264.92 5.02
AIC 2856.39 524.83 -568.23 22.77
BIC 2788.55 531.23 -456.31 7.73

TABLE 1. Model comparisons. The summary statistics resulting from 10-fold cross validation
utilising the Mean Squared Error and the log of the ’Evidence’ for each model.

In our ‘Ridge’ model, we did not have any outliers in any of our test sets, in our ‘Ridge.int’ model
(where the intercept is penalised) we detected a total of 41 outliers across all test sets.

As an extension of these models, we also consider hybrid models, to see the effect of estimating the
parameters of subset models via Ridge methods. We propose an additional four models; ‘AIC.Ridge’
(the covariates of the ‘AIC’ model with estimates calculated via Ridge regression), ‘AIC.Ridge.int’
(equivalently, but the Ridge estimates calculated include penalising the intercept), ‘BIC.Ridge’ (the
covariates of the ‘BIC’ model with estimates calculated via Ridge regression), and ‘BIC.Ridge.int’
(equivalently, but the Ridge estimates calculated include penalising the intercept). We can see from
Table [2| that the hybrid model with the lowest average MSE is the ‘BIC.Ridge.int’ model, with an
average MSE of 2812.74. The ‘AIC.Ridge’ model had the highest average MSE of 3281.34. Alterna-
tively, the 'BIC.Ridge’ model had the largest average log(Evidence), with a value of -261.54, and the
‘BIC.Ridge.int’ had the smallest at -267.48. However, there was very little difference in the average
log(Evidence) for the four hybrid models, all four falling within 6 points of each other.

By comparing Table [l and |2, we can see the effect that adapting each model to have Ridge coeffi-
cients has. In general, adding Ridge coefficients that are calculated via penalising the intercept have
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Model Avg. MSE | MSE Std. Dev. | Avg. Log(Evidence) | Log(Evidence) Std. Dev.
AIC.Ridge 3281.34 571.70 -262.97 4.15
BIC.Ridge 3005.83 558.15 -261.54 4.44

AIC.Ridge.int 2887.05 577.06 -266.95 5.37
BIC.Ridge.int 2812.74 565.32 -267.48 4.45

TABLE 2. Hybrid model comparisons. The summary statistics resulting from 10-fold cross valida-
tion utilising the Mean Squared Error and the log of the 'Evidence’ for each hybrid model.

lower Mean squared error then their alternatives, however, neither method of estimating the Ridge
coefficients lowers the MSEs beyond that of the associated classical subset models. For instance, the
lowest average MSE in the hybrid models is associated with ‘BIC.Ridge.int’ with 2812.74, but the
classical ‘BIC’ model has an average MSE of 2788.55. If we consider another point of view and look at
the hybrid models as selecting a subset of covariates in the ‘Ridge’ and ‘Ridge.int’ models, we can see
that all four hybrid models in Table [2| have lower average MSEs than their associated Ridge regres-
sion model in Table|l} For the log(Evidence) however, adapting each model to have Ridge coefficients
drastically increases the log(Evidence) compared to their classical counterparts, with classical models
having a value around -500, and the hybrid models having a value around -265. The ‘AIC.Ridge’ and
‘BIC.Ridge’ models even improve on the log(Evidence) of their associated model, ‘Ridge’.

4. DISCUSSION

It is clear from Table [I] that, for this data set, the classical subset models are better at predicting
the response variable, a quantitative measure of disease progression one year after baseline, for new
data once the model is trained. In fact the ‘Ridge’ model which does not penalise the intercept is
barely better than the classical ‘full’ model. It is interesting to note that in all cases, including the
hybrid models, the Ridge estimates that penalise the intercept are able to predict new data far better
than when the intercept is calculated as the mean of the response variables from the training data,
despite the fact that the literature (and common practice) is to not penalise the intercept. This could
simply be a random occurrence for this data set that does not occur in general.

By comparing Table [I| and [2], we can see that for out of sample predicitivity, the classical subset
models are generally better than their Ridge regression counterparts. Part of the reason to choose
Ridge regression and other shrinkage methods over classical subset methods is that they are less
computationally intensive, for this reason, for extremely large and complex models, Ridge regression
may be used even if the predicitivity is expected to suffer. The hybrid models would require one
to run both subset selection and Ridge regression, and so would increase the computational burden,
and since they do not improve on the classical subset models’ ability to predict, there is very little
evidence to suggest they would be worth implementing. It makes sense that these hybrid models
are not as effective as the classical subset models, since the subset models are less likely to exhibit
multicollinearity, and as of thus their estimates are going to have smaller variance, so the bias added by
Ridge coefficients will outweigh the negligible additional reduction in variance they provide. A better
method for incorporating variable selection into a shrinkage method is to use LASSO regression B4
LASSO regression works in much the same way that Ridge regression does, except that the prior put
on B is a multivariate double-exponential distribution (also known as a Laplace distribution) with a
mean of 0 and a scale parameter that is a function of A\Bl. The LASSO coefficient estimates are given
by the posterior mode of 8 (but not the mean) Bl We suggest that it would be worth performing
LASSO regression on this data set, and comparing how effective it is at predicting new data to both
the Ridge regression models and the classical subset models.

5. CONCLUSION

We have given an overview of the theory behind Bayesian Ridge regression, and compared its
performance to classical methods of model building. For this particular dataset we found that Ridge
regression was not as effective as classical subset methods of regression. Ridge regression is still a
very useful tool however, and there will be lots of circumstances where it will perform better than
classical methods. In addition there are lots of other regression methods that could be considered,

such as LASSO regression, Principle Component regression and Least Angle regression B4l
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6. APPENDIX

6.1. Proof 1. The model can be reformulated such that

y=XB+ e where € ~ Normal(0, %In), (17)
B = Po+ e where €; ~ Normal(0, 2%). (18)

and we can combine these two elements such that
y=Xp+te+ea (19)

thus y|7 has a Normal distribution, as it is a linear combination of independent normal distributions,
with mean given by

Ely] = E[X o + €2 + €1] (20)
=E[XBo] + E[Xea] + Eleq] (21)
=X B0+ E[Xe] + Eleq] (22)
=XB+X0+0 (23)
=X /o (24)
by the linearity of expectation, and variance given by
Var(y) = Var(X o + ez + €1) (25)
= Var(X fy) + Var(Xea) + Var(e;) (26)
+ 2Cov(X By, X €a) + 2Cov(X Sy, €1) + 2Cov(Xea, €1) (27)
=0+ Var(Xe2) + Var(e1) +04+0+0 (28)
= X Var(e)XT + Var(e;) (29)
— X(130)XT + (L1,) (30)
=11, + X$oXT). (31)
Thus,
y|r ~N (Xﬂo, %(In + XEOXT)> . (32)
6.2. Proof 2.
Flylr) o« 1 exp {3 - XB0)" (AL + X20X") - X8y} (33)
(2L (I,, + XSoXT)|?
> 73 exp {—%(y — XBo)" (L(I, + XZ6XT)) " (y - Xﬁo)} . (34)
and we know that the prior on 7 is given by
7)o g™ exp{—hor} (3)

o 7% L exp{—byT}. (36)
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thus we can find the joint distribution of the two using Bayes theorem,

fly,7) o< fylT)f(7)

x 72 exp {—%(y - XBo)" (L(1, + XEOXT))_1 (y — Xﬂo)} 79 exp{—boT}

720 exp { = [y = XBo)" (I + XToXT) ™" (y — XBo) + bo| }

By integrating out 7 from this joint distribution we can find the marginal likelihood for y,

f(w) = / f(y, 7)dr

o /Tg+a0_1 exp {—T B(y — Xﬁo)T (In + XEOXT)_1 (y —XBo) + bo] } dr

(40)

(41)

This is the kernel of a Gamma(% + ag, %(y — XBo)T (In + XEOXT)_l (y —XBo) + bo> distribution,

SO
(5 + ao)
fy) 2 T
(3 — XBo)" (L + X20XT) ™ (y — XBo) + bo|*
—(n+2ao)
—(n+2ao) _ —
x(bo) " 7 L+ g —XBo)" (I + XDoXT) ' (y—XBo)|
. —(n+2ag)
o [1+ ok 2y — XBo)T (1 + X%0XT) ™ (y - XBo)|
—(n+2ap)

(y — XBo)" L% (In +XEOXT)}71 (y — XBo) 2

x |1+ %
0

Thus, the marginal distribution of y is given by
Yy ~ MVTy,, XBo, ;O(In + XXX ) .

6.3. Proof 3. We know that
m(y|r,B) x T2 exp{—F(y — XB) (y — XB)}

(B|7) o (TA)2 exp {~ 2878}

7(1) o< T Lexp {—boT} .

Thus we can use Bayes rule such that
m(7|B) o< w(B|T)pi(7)
o (T)\)g exp {—%ﬂT,B} 7% L exp {—bo7}
o 750D oxpy 7 by + 287 4]}
and as such
(7, Bly) o w(y|T, B)7 (7, B)
x 72 exp {~5(y - XB) (y — XB)} 750D e {~7[bo+ 58" 8]}
o 3+ ar 0 D egp (7 [y + 3ABTB+ Ly — XB) (y — XB)]} .
Now, let Z = [by + 3ABTB+ 3(y — XB)"(y — XB)], then
Z=bo+iM'B+3[yy—v'XB-B"X"y+B ' X"Xp]
=bo+ 3y y+3 M8 (XTy) BB X"y +B XTXP]
=bo+ 2Ty + 3 [-XTy) B - BTXTy+ BT (XTX + ,\)B] .

(42)

(43)

(44)
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Now define
Bn=(X"X+ Ip}‘)il X"y, o= (XTX + Ip/\)il ,
an:a0+g, bn:bo+%(yTy—ﬂZE;1ﬂn)-
So that
Z=bo+ 3y y+ 3 [—(5,'B8)"B-B"S, B+ B L, B] (59)
= by + %yTy +3[-BrE'B BT, Bu + BT B] (60)
— b, + L [BY nlﬂn — BB~ BT, B + 7S, B (61)
= by + 5 [(B—Ba)"E; (B~ Ba)]. (62)
Thus,
w(7.Bly) o 730 Deap {7 [b, + L [(B— B)"S, (B - B)]]) (63)
o 75 Vewp {1 [b, + L [(B— B)S7 (B - Ba)]]} (64)

which is proportional to a Gamma(% + an, b, + 3(8 — Bn)T S, (B — Br)). Thus by integrating out 7
we can find the marginal distribution of B, using the fact that 7(7, Bly) has the form of a Gamma
kernel

n(Bly) = [ n(r.Bly)dr (65)
& +ay
o (5 + an) r (66)
[bn + %(ﬂ - ,Bn)TE (ﬂ ,Bn)] )
1 Ty—1 —(p+22a")
X [bn + §(ﬂ —Bn) X, (B— ﬂn)] (67)
2a
_(p+2a”) _(p;r ~)
x by 1+ 3B B B8] (68)
7(p+§an)
x [+ 3(8 = Ba) " (2230) 7 (B — Bu)| . (69)
Thus, the marginal distribution of 8 is given by
bn,
Bl ~ MVTa, (B 225, ) (10
Alternatively, by integrating out 8 from 7 (7, B|y) we can find the marginal distribution of 7
w(rly) = [ n(r. ) )
P,
- /T(2+ "Deap {7 [bu + 3 [(B—Bx)"," (B - B.)]]} dB (72)
P
— 7@ Vegp (—rb,) / rSeap {1 [(B — Bu)"S; (B — Bu)]} dB. (73)
The term inside the integral is the kernel of a multivariate Gaussian distribution, and as such
w(rly) = 7 Veap {—7b,} det(275,,) (74)
o 7@ Vegp {—71by} . (75)

Thus, the marginal distribution of 7 is given by

Tly ~ Gamma (a, by,) . (76)
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6.4. R code. The R code that was used to fit all the models presented in this paper is detailed below.

FL UL AL LA YL (UL P S L LI LTI S
T T i i i i i i i i i i it

s BAYES PROJECT CODE Hiibt:

L
T i i i i i i i i i i i i i i 117

library (" mvnfast”)
library (caret)
library (MASS)

data <— read.csv(”diabetes.csv”)
y <— data[,2]

X.int <— data[,—2]

X.int[,1] <= 1

colnames (X. int ) [1] <— ”"Int”
X.no.int <— data[,—(1:2)]

a_.0 =2

b_0 =2

B L L (S IO LT
T T T 1T T T T 1T AT T 7 1 T 11 1 11 11 11 1777

#HHHF Find Lambda ##H#HHH

IR NI IR I mInImINInInIn I

S HIAA A A AT
11h .y=function (lambda, X, y){
X=as . matrix (X)
p=ncol (X)
n=nrow (X)
a=2
b=2

S=diag(1/lambda,p)

COV = b/ax ( diag(1l,n) + X%x%S%+%t (X) )

11lh = dmvt(t(y),rep(0,n),COV,2xa,log=TRUE)

return (1lh)

negllh .y=function (lambda, X, y){
1lh <— llh.y(lambda, X, y)

return(—11h)

}

S <— optim (0.1, negllh.y, X=X.no.int ,
ﬁT)

lambda _opt <— S$par

#plot lambda

y=y,

method=" Brent”

,lower=0.001,upper=100,hessian
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BAYESIAN RIDGE REGRESSION: AN OVERVIEW AND COMPARISON TO CLASSICAL REGRESSION.
lambda <— seq(from = 2.5, to = 3.5, length.out = 1000)

loglik =1
for(i in 1:1000){

loglik [i] <— llh.y(lambda[i], X.no.int, y)
}

plot (lambda, loglik , type = 717, xlab = expression (lambda), ylab = "log(Likelihood)”,
main =expression (paste (”The Evidence evaluated at different values of 7, lambda)))

7 abline (v = lambda_opt, col = 7red”)

RN NI NIRRT IR IR IR NIRRT NIRRT NN IR NN NN

T it it it i i1 i1t

#H#H# Find Posterior Parameters #AHH

post.param <— function (a0, b0, lambda, X, y){
X <— as.matrix (X)
p <— ncol(X)
n <— nrow (X)
beta_n <— solve (t(X)%+%X + diag(lambda,p)) %% t(X) %% y
Sigma_n <— solve (t(X)%+%X + diag (lambda,p))
a.n <— a0 + n/2
b_.n <— b0 + 0.5 * (t(y) %% y — t(beta_n) %% solve (Sigma_-n) %+% beta_n)
params <— list (beta_n, Sigma_-n, a_n, b_n)

return (params)

post .params <— post.param(2,2,lambda_opt, X.no.int, y)

103
104
105
106

##H#HHE Find the evidence for a subset of the variables #HHHHH

L)

T T TuuT T rTraT

Evidence <— function(X, y, var, a_.0 = 2, b_0 = 2, lambda){

X <= X[, var]

X <— as.matrix (X)

p <— ncol(X)

n <— nrow (X)

S_0 <— diag(1l/lambda, p)
beta_0 <— as.matrix(rep (0, p))

mean <— X %% beta_0
COV <— (b_0/a_0) * (diag(n) + X%*%S_0%+%t (X))

11lh <— dmvt(X = t(y), mu = mean, sigma = COV, df = 2xa_0, log = TRUE)

11
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return (1lh)
}

Evidence(X.no.int, y, c¢(=3), 2, 2, lambda_opt)

JYJ) g gy gy gy gy g gy gy ) gy g gy gy gy gy gy g gy gy gy g gy gy g gy gy gy g gy g gy g gy gy g gy g gy gy gy g g g gy g g ) gy ) g )

L A A L A A A A A A A A A A L A O O O e a h

H#HHHAHAHAH BAYES PROJECT: Model Building and Diagnostics #HHHHHHH

#Randomly shuffle the data
DataMix <— data[sample(nrow(data)) ,]

yMIX <— DataMix [ ,2]
XMIX. int <— DataMix [, —2]
XMIX. int [ ,1] <— 1

colnames (XMIX. int ) [1] <— " Int”

XMIX.no.int <— DataMix[, —(1:2)]

#Create 10 equally size folds
folds <— cut(seq(1l,nrow (XMIX.no.int)),6 breaks=10,labels=FALSE)

AR Full Model (L=0) #HHAHEHHHH#

model. full = Im(y~.,data=as.data.frame(X.no.int)) # model with every covariate ,
including an intercept

MSE. full <— data.frame(Run = 1:10, MSE = NA)
Evidence. full <— data.frame(Run = 1:10, Evidence = NA)

#Perform 10 fold cross validation
for (i in 1:10){
#Segement your data by fold using the which() function
testIndexes <— which(folds=i , arr.ind=TRUE)
testData <— XMIX.no.int [testIndexes , |
trainData <— XMIX.no.int[—testIndexes , |
testResponse <— yMIX[testIndexes]
trainResponse <— yMIX[—testIndexes]

model <— Im(trainResponse”.,data=as.data.frame(trainData))

testData$pred <— predict(model, testData, type="response”)

MSE. full [i,2] <— (1/length(testResponse)) x sum( (testResponse — testData$pred) 2 )

Evidence. full [i,2] <— Evidence (X = testData, y = testResponse, c(1l:ncol(testData)),
a_0, b_0, lambda = 0.000000000001)
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it AIC Model (L=0) Hbithpiiisiits
model . AIC = step (model. full) # AIC

Names.AIC = names(model.AIC$coeff) # the names of the coefficients chosen by AIC
Covariates .AIC = match (Names.AIC, names(X.no.int))
Covariates.AIC <— Covariates.AIC[—1]

MSE. AIC <— data.frame(Run = 1:10, MSE = NA)
Evidence .AIC <— data.frame(Run = 1:10, Evidence = NA)

#Perform 10 fold cross validation
for (i in 1:10){
#Segement your data by fold using the which() function
testIndexes <— which(folds==i , arr.ind=TRUE)
testData <— XMIX.no.int [testIndexes , ]
trainData <— XMIX.no.int[—testIndexes , |
testResponse <— yMIX[testIndexes]
trainResponse <— yMIX[—testIndexes ]

model <— lm(trainResponse”™.,data=as.data.frame(trainData) [, Covariates.AIC])
testData$pred <— predict (model, testData, type="response”)

MSE.AIC[i,2] <— (1/length(testResponse)) x sum( (testResponse — testData$pred) 2 )

Evidence .AIC[i,2] <— Evidence (X = testData, y = testResponse, Covariates.AIC, a_0, b
_0, lambda = 0.000000000001)

 }

AR BIC Model (L=0) #HHHHHHHH
model . BIC = step (model. full ,k=log (nrow (X.no.int))) # k=2 is AIC, k= log(n) is the BIC

Names.BIC = names(model.BIC$coeff) # the names of the coefficients chosen by AIC
Covariates .BIC = match (Names.BIC,names(X.no.int))
Covariates .BIC = Covariates.BIC[—1]

MSE.BIC <— data.frame(Run = 1:10, MSE = NA)
Evidence .BIC <— data.frame(Run = 1:10, Evidence = NA)

#Perform 10 fold cross validation
for (i in 1:10){
#Segement your data by fold using the which() function
testIndexes <— which(folds==i , arr.ind=TRUE)
testData <— XMIX.no.int [testIndexes , |
trainData <— XMIX.no.int[—testIndexes , |
testResponse <— yMIX[testIndexes]
trainResponse <— yMIX[—testIndexes]

model <— Im(trainResponse”™.,data=as.data.frame(trainData) [, Covariates.BIC])
testData$pred <— predict (model, testData, type="response”)

MSE.BIC[i,2] <— (1/length(testResponse)) x sum( (testResponse — testData$pred) 2 )
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Evidence .BIC[i,2] <— Evidence (X = testData, y = testResponse, Covariates.BIC,
_0, lambda = 0.000000000001)

HHEHHHEAHHAAE Shrunken Model (Ridge, L = L_opt) #HHHHHHHHF

1 MSE. shrunk <— data.frame(Run = 1:10, MSE = NA)

Evidence.shrunk <— data.frame(Run = 1:10, Evidence = NA)
PPV <— XMIX.no.int [,1:2]

#Perform 10 fold cross validation
for (i in 1:10){
#Segement your data by fold using the which() function
testIndexes <— which(folds=i , arr.ind=TRUE)
testData <— XMIX.no.int [testIndexes , |
trainData <— XMIX.no.int[—testIndexes, |
testResponse <— yMIX[testIndexes]
trainResponse <— yMIX[—testIndexes]

L <— optim(0.1,negllh.y, X=trainData, y=trainResponse, method="Brent” ,lower=0.

upper=10,hessian=T)
L_opt <— L$par
params <— post.param(2,2,L_opt, trainData ,trainResponse)
beta_n <— params[[1]]
Sigma_n <— params[[2]]
a_n <— params [[3]]
b_n <— params[[4]]

testData$pred <— mean(testResponse) + as.matrix (testData)%+%as.matrix (beta_n)

a_0, b

001,

MSE. shrunk [i,2] <— (1/length(testResponse)) x sum( (testResponse — testData$pred) "2

)

Evidence.shrunk[i,2] <— Evidence (X = testData, y = testResponse, c(l:ncol(testData))

, a_0, b_0, lambda = L_opt)
test .ppv = 0
for(j in 1:length(testResponse)){

sd = (b_n/a_n * (1 + as.matrix(testData[j,—65]) %% Sigma_-n %% t(as.matrix(
testData[j,—65])))) 0.5

test .ppv[j] = min(pnorm(testResponse[j],testData$pred[j,—65],sd), 1—pnorm
testResponse[j],testData$pred[j,—65],sd))
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289

200  PPV[testIndexes ,1] <— test.ppv

291

292

293

204 names (PPV) [1:2] <— c¢("P—values”, ”Outlier?”)
295

206 for (i in 1:nrow(PPV)){

297

298

if (PPV[i,1] < 0.05){PPV[i,2] = TRUE}else {PPV[i,2] = FALSE}
}

299 summary (as. factor (PPV[,2]))

300

301 HHHHHEAHHH Intercept Ridge Model (Ridge, L = L_opt) #HHHHHHHHHE

302

303 MSE. ridge . int <— data.frame(Run = 1:10, MSE = NA)

304

305 Evidence.ridge.int <— data.frame(Run = 1:10, Evidence = NA)

306

307 PPV.int <— XMIX.no.int [,1:2]

308

309 #Perform 10 fold cross validation
310 for(i in 1:10){

311
312
313
314
315
316
317
318
319

#Segement your data by fold using the which() function
testIndexes <— which(folds=i , arr.ind=TRUE)

testData <— XMIX. int [testIndexes , |

trainData <— XMIX.int[—testIndexes , |

testResponse <— yMIX[testIndexes]

trainResponse <— yMIX[—testIndexes]

L <— optim(0.1,negllh.y, X=trainData, y=trainResponse, method="Brent” ,lower=0.001,
upper=10,hessian=T)

L_opt <— L$par

params <— post.param(2,2,L_opt, trainData ,trainResponse)

beta_n <— params [[1]]

Sigma_n <— params [[2]]

a_n <— params [[3]]

b_n <— params [[4]]

testData$pred <— as.matrix (testData)%+%as.matrix (beta_n)

MSE. shrunk [i,2] <— (1/length(testResponse)) * sum( (testResponse — testData$pred) "2

)

Evidence.shrunk[i,2] <— Evidence(X = testData, y = testResponse, c(l:ncol(testData))
, a_0, b_0, lambda = L_opt)

test .ppv = 0
for(j in 1l:length (testResponse)){

sd = (b_.n/a_n % (1 + as.matrix(testData[j,—66]) %% Sigma_n %% t (as.matrix (
testData[j,—66])))) 0.5
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345 test.ppv[j] = min(pnorm(testResponse[]j],testData$pred[j,—66],sd), l—pnorm/(
testResponse[j],testData$pred[j,—66],sd))

346

347}

348

349 PPV.int [testIndexes ,1] <— test.ppv

350

351 }

353 names (PPV.int) [1:2] <— c("P—values”, 7 Outlier?”)

355 for (i in 1l:nrow(PPV.int)){

356 if (PPV.int[i,1] < 0.05){PPV.int[i,2] = TRUE}else{PPV.int [i,2] = FALSE}
357 }

358 summary (as. factor (PPV.int [,2]))

360 HHHHHHEAHE AIC/Ridge Model (Ridge, L = L_opt) #HHHHHHH
362 MSE. AIC.R <— data.frame(Run = 1:10, MSE = NA)

364 Evidence.AIC.R <— data.frame(Run = 1:10, Evidence = NA)
366 AIC.X.no.int <— XMIX.no.int[,Covariates.AIC]

368 PPV.AIC.R <— AIC.X.no.int[,1:2]

370 #Perform 10 fold cross validation

371 for (i in 1:10){

372 #Segement your data by fold using the which() function
373 testIndexes <— which(folds=i , arr.ind=TRUE)

374 testData <— AIC.X.no.int [testIndexes, |

375 trainData <— AIC.X.no.int[—testIndexes, |

376 testResponse <— yMIX[testIndexes]
377 trainResponse <— yMIX[—testIndexes]

380 L <— optim(0.1,negllh.y, X=trainData, y=trainResponse, method="Brent” ,lower=0.001,
upper=10,hessian=T)

382 L_opt <— L$par

384 params <— post.param(2,2,L_opt, trainData ,trainResponse)

386 beta_n <— params[[1]]

388 Sigma_n <— params [[2]]

390 a.n <— params [[3]]

302 b_n <— params[[4]]

304 testData$pred <— mean(testResponse) + as.matrix(testData )%+ %as.matrix(beta_n)

306 MSE.AIC.R[i,2] <— (1/length(testResponse)) * sum( (testResponse — testData$pred)”2 )

308 Evidence.AIC.R[i,2] <— Evidence (X = testData, y = testResponse, c(l:ncol(testData)),
a_0, b_0, lambda = L_opt)

400 test .ppv = 0
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for(j in 1l:length (testResponse)){
sd = (b_.n/a_n * (1 + as.matrix(testData[j,—ncol(testData)]) %% Sigma_n %% t(as.
matrix (testData[j,—ncol(testData)])))) 0.5
test.ppv[j] = min(pnorm(testResponse[j],testData$pred[j,—ncol(testData)],sd), 1—
pnorm (testResponse[j],testData$pred[j,—ncol(testData)],sd))
}
PPV.AIC.R[testIndexes ,1] <— test.ppv
}
names (PPV.AIC.R) [1:2] <— c(”P—values”, ”?Outlier?”)

for (i in 1l:nrow (PPV.BIC.R)){
if (PPV.AIC.R[i,1] < 0.05){PPV.AIC.R[i,2] = TRUE}else {PPV.AIC.R[i,2] = FALSE}

}
summary (as . factor (PPV.AIC.R[,2]))
#HHHHHAHAHE BIC/Ridge Model (Ridge, L = L_opt) #HHEHHAHH#
MSE.BIC.R <— data.frame(Run = 1:10, MSE = NA)
Evidence .BIC.R <— data.frame(Run = 1:10, Evidence = NA)
BIC.X.no.int <— XMIX.no.int[,Covariates.BIC]
PPV.BIC.R <— AIC.X.no.int [,1:2]
#Perform 10 fold cross validation
for (i in 1:10){
#Segement your data by fold using the which() function
testIndexes <— which(folds=i ,arr.ind=TRUE)
testData <— BIC.X.no.int [testIndexes, |
trainData <— BIC.X.no.int[—testIndexes, |

testResponse <— yMIX[testIndexes]
trainResponse <— yMIX[—testIndexes]

L <— optim(0.1,negllh.y, X=trainData, y=trainResponse, method="Brent” ,lower=0.001,
upper=10,hessian=T)

L_opt <— L$par

params <— post.param(2,2,L_opt, trainData ,trainResponse)

beta_n <— params[[1]]

Sigma_n <— params [[2]]

a_n <— params [[3]]

b_n <— params[[4]]

testData$pred <— mean(testResponse) + as.matrix(testData)%+%as.matrix(beta_n)

MSE.BIC.R[i,2] <— (1/length(testResponse)) x sum( (testResponse — testData$pred) 2 )
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Evidence .BIC.R[i,2] <— Evidence (X = testData, y = testResponse, c(l:ncol(testData)),
a_0, b_0, lambda = L_opt)

test .ppv = 0
for(j in 1l:length (testResponse)){
sd = (b.n/a_n % (1 + as.matrix(testData[j,—ncol(testData)]) %% Sigma_n %% t(as.
matrix (testData[j,—ncol(testData)])))) 0.5
test.ppv[j] = min(pnorm(testResponse[j],testData$pred[j,—ncol(testData)],sd), 1—
pnorm (testResponse[j],testData$pred[j,—ncol(testData)],sd))
}
PPV.BIC.R[testIndexes ,1] <— test.ppv
}
; names (PPV.BIC.R) [1:2] <— c("P—values”, 7 Outlier?”)
for (i in 1l:nrow (PPV.BIC.R)){
if (PPV.BIC.R[i,1] < 0.05){PPV.BIC.R[i,2] = TRUE}else {PPV.BIC.R[i ,2] = FALSE}

}
summary (as . factor (PPV.BIC.R[,2]))

HHHHHEAHHHAHE ATIC/Ridge . int Model (Ridge, L = L_opt) #HHHHHHHHHE

37 MSE. AIC.R. int <— data.frame(Run = 1:10, MSE = NA)

Evidence .AIC.R.int <— data.frame(Run = 1:10, Evidence = NA)
AIC.X.int <— XMIX.int[,c(1,Covariates.AIC+1)]
PPV.AIC.R.int <— AIC.X.int [,1:2]
#Perform 10 fold cross validation
for (i in 1:10){
#Segement your data by fold using the which() function
testIndexes <— which(folds==i , arr.ind=TRUE)
testData <— AIC.X.int [testIndexes, ]
trainData <— AIC.X.int[—testIndexes, |

testResponse <— yMIX[testIndexes]
trainResponse <— yMIX[—testIndexes]

L <— optim (0.1 ,negllh.y, X=trainData , y=trainResponse, method="Brent” /lower=0.001,
upper=10,hessian=T)

L_opt <— L$par

params <— post.param(2,2,L_opt, trainData ,trainResponse)

beta_n <— params [[1]]

Sigma_n <— params [[2]]
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a_-n <— params [[3]]

b_n <— params[[4]]

testData$pred <— as.matrix (testData)%+%as.matrix (beta_n)

MSE.AIC.R.int [i,2] <— (1/length(testResponse)) x sum( (testResponse — testData$pred)
2)

Evidence .AIC.R.int [i,2] <— Evidence (X = testData, y = testResponse, c(l:ncol(
testData)), a-0, b_0, lambda = L_opt)

test .ppv = 0

for(j in 1l:length (testResponse)){
sd = (b.n/a_n x (1 + as.matrix(testData[j,—ncol(testData)]) %% Sigma_n %% t(as.
matrix (testData[j,—ncol(testData)])))) 0.5
test .ppv[j] = min(pnorm(testResponse[j],testData$pred[j,—ncol(testData)],sd), 1—
pnorm (testResponse[j],testData$pred[j,—ncol(testData)],sd))

}

PPV.AIC.R.int [testIndexes ,1] <— test.ppv

}

names (PPV.AIC.R. int ) [1:2] <— c(”P—values”, ”?Outlier?”)

. for (i in 1l:nrow(PPV.AIC.R.int)){

if (PPV.AIC.R.int [i,1] < 0.05){PPV.AIC.R.int[i,2] = TRUE}else {PPV.AIC.R.int [i,2] =
FALSE}

}

summary (as . factor (PPV.AIC.R.int [,2]))

HHHHEHHHAE BIC /Ridge . int Model (Ridge, L = L_opt) #HHHHHHHHE
MSE.BIC.R.int <— data.frame(Run = 1:10, MSE = NA)
Evidence .BIC.R.int <— data.frame(Run = 1:10, Evidence = NA)

BIC.X.int <— XMIX.int[,c(1l,Covariates.BIC+1)]

 PPV.BIC.R.int <— BIC.X.int[,1:2]

#Perform 10 fold cross validation
for (i in 1:10){
#Segement your data by fold using the which() function
testIndexes <— which(folds=i , arr.ind=TRUE)
testData <— BIC.X.int [testIndexes, |
trainData <— BIC.X.int[—testIndexes, |
testResponse <— yMIX[testIndexes]
trainResponse <— yMIX[—testIndexes]

L <— optim(0.1,negllh.y, X=trainData, y=trainResponse, method="Brent” ,lower=0.001,
upper=10,hessian=T)
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0 L_opt <— L$par

7

571

572 params <— post.param(2,2,L_opt, trainData ,trainResponse)
573

574  beta_n <— params[[1]]

575

576 Sigma_n <— params [[2]]

577

578  a.n <— params [[3]]

n

579

580  b.n <— params[[4]]

581

582 testData$pred <— as.matrix (testData )%+«%as.matrix (beta _n)

583

584  MSE.BIC.R.int [i,2] <— (1/length(testResponse)) * sum( (testResponse — testData$pred
)2 )

585

586 Evidence .BIC.R.int [i,2] <— Evidence (X = testData, y = testResponse, c(l:ncol(
testData)), a_0, b_0, lambda = L_opt)
587

588 test .ppv = 0

589

590 for(j in 1l:length (testResponse)){

591

592 sd = (b_n/a_n % (1 + as.matrix(testData[j,—ncol(testData)]) %% Sigma_n %% t(as.
matrix (testData[j,—ncol(testData)])))) 0.5

593

594 test.ppv[j] = min(pnorm(testResponse[j],testData$pred[j,—ncol(testData)],sd), 1—
pnorm (testResponse [j],testData$pred[j,—ncol(testData)],sd))

595

596  }

597

508  PPV.BIC.R.int [testIndexes ,l1] <— test.ppv

599

600 }

601

602 names (PPV.BIC.R.int ) [1:2] <— c(”"P—values”, 7 Outlier?”)

603

604 for (i in 1l:nrow(PPV.BIC.R.int)){

60  if (PPV.BIC.R.int[i,1] < 0.05){PPV.BIC.R.int[i,2] = TRUE}else {PPV.BIC.R.int[i,2] =

FALSE}
606 }
607 summary (as. factor (PPV.BIC.R.int [,2]))
608

609

610 Hbbiiiiii Model Comparison Ay
611

612 MSE. compare <— function () {

613  MSE <— data.frame(fold = 1:10, Full = MSE. full [,2], Ridge = MSE.shrunk[,2], Ridge.
int = MSE.ridge .int [,2], AIC = MSE.AIC[,2],

614 BIC = MSE.BIC[,2], Ridge.glmnet = MSE. Ridge.auto[,2], Ridge.MASS =
MSE. Ridge . auto .MASS[, 2],

615 AIC.Ridge = MSE.AIC.R[,2], BIC.Ridge = MSE.BIC.R[,2], AIC.Ridge.int

= MSE.AIC.R.int [,2], BIC.Ridge.int = MSE.BIC.R.int [,2])
616
617  MSE[11,1] <— 7Avg.”
618  MSE[11,2] <— mean(MSE[1:10,2])
619  MSE[11,3] <— mean(MSE[1:10,3])
MSE[ ]

620 11,4] <— mean(MSE[1:10,4])
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621 E[11,5] <— mean(MSE[1:10,5])
622 E[11,6] <— mean(MSE[1:10,6])
623 E[11,7] <— mean(MSE[1:10,7])
624 E[11,8] <— mean(MSE[1:10,8])
625 MSE[11,9] <— mean(MSE[1:10,9])
626 E[11,10] <— mean(MSE[1:10,10])
627 E[11,11] <— mean(MSE[1:10,11])
628 E[11,12] <— mean(MSE[1:10,12])
629

630 E[12,1] <— ”SD”

631 E[12,2] <— sd(MSE[1:10,2])

632 E[12,3] <— sd(MSE[1:10,3])

633 E[12,4] <— sd(MSE[1:10,4])

634 E[12,5] <— sd(MSE[1:10,5])

635 E[12,6] <— sd(MSE[1:10,6])

636 MSE[12,7] <— sd(MSE[1:10,7])

637 E[12,8] <— sd(MSE[1:10,8])

638 E[12,9] <— sd(MSE[1:10,9])

639 E[12,10] <— sd(MSE[1:10,10])
640 E[12,11] <— sd(MSE[1:10,11])
641 E[12,12] <— sd(MSE[1:10,12])
642

643 return (MSE)

644 }

645

646 Evi.compare <— function () {
647 Evi <— data.frame(fold = 1:10, Full = Evidence. full[,2], Ridge = Evidence.shrunk
[,2], Ridge.int = Evidence.ridge.int [,2], AIC = Evidence.AIC[,2],

648 BIC = Evidence.BIC[,2], Ridge.auto = Evidence.Ridge.auto[,2],
Ridge .MASS = Evidence.Ridge.auto.MASS[,2],
649 AIC.Ridge = Evidence.AIC.R[,2], BIC.Ridge = Evidence.BIC.R[,2],

AIC.Ridge.int = Evidence.AIC.R.int [,2], BIC.Ridge.int = Evidence.BIC.R.int [,2])

661 Evi[11,11] <— mean(Evi[1:10,11])
662  Evi[11,12] <— mean(Evi[1:10,12])

651 Evi[1l,1] <= 7Avg.”
652 Evi[11,2] <— mean(Evi[1:10,2])
653 EV1[11 3] <— mean(Evi[1:10,3])
654 Evi[ll,4] <— mean(Evi[1:10,4])
655  Evi[l11,5] <— mean(Evi[1:10,5])
656  Evi[11,6] <— mean(Evi[1:10,6])
657  Evi[11,7] <— mean(Evi[1:10,7])
658 Evi[11,8] <— mean(Evi[1:10,8])
650  Evi[11,9] <— mean(Evi[1:10,9])
660  Evi[11,10] <— mean(Evi[1:10,10])
[
[

664  Evi[l2,1
665  Evi[l2,2

] <— ”SD”

] <= sd(Evi[1:10,2]
666  Evi[12,3] <— sd(Evi[1:10,3]
667  Evi[l12,4] <— sd(Evi[1:10,4]
665  BEvi[12,5] <— sd(BEvi[1:10,5]
669 Evi[12,6] <— sd(Evi[1:10,6]
670  Evi[12,7] <— sd(Evi[1:10,7]
671 Evi[12,8] <— sd(Evi[1:10,8]
672 Evi[12,9] <— sd(Evi[1:10,9]
Evi[12,10] <— sd(Evi[1:10,10])
Evi[12,11] <— sd(Evi[1:10,11])
Evi[12,12] <— sd(Evi[1:10,12])

)
)
)
)
)
)
)
)

9} = W

I3 3393
!

~

return (Evi)
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678 }

679

680 MSE <— MSE. compare ()
681 Evi <— Evi.compare ()
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