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Abstract

The modelling of infectious diseases is vital for their understanding and control. In-
fectious disease data, however, are often characterised by high dependence and missing
information, which make inference on models a difficult task. Even advanced statisti-
cal techniques such as Monte Carlo Markov Chain (MCMC) can sometimes fall prey to
these challenges and become highly inefficient. In such cases, we require an alternative
method for making inference on these models. One such alternative could be Approximate
Bayesian Computation (ABC), a likelihood-free (sometimes called simulation) method of
inference. In this dissertation we present a series of ABC methods which can be used to
make approximate inference for epidemic models, and demonstrate their effectiveness on
a series of simple case study outbreak datasets. Following this, we apply a selection of
the methods to a complex spatio-temporal outbreak dataset for Sugarcane Yellow Leaf
Virus. Finally, we discuss some questions that have arisen throughout the dissertation
on the use of ABC, and give our judgement on its position as an alternative to MCMC
for making inference on epidemic models, given our current knowledge.

1. Introduction

The understanding of infectious diseases is vital for their control and, ideally, eradica-
tion. The World Health Organisation (WHO) estimates vector-borne diseases alone cause
more than 700, 000 deaths annually, and they only account for 17% of human infectious
diseases [33]. Statistical modelling has been utilised in the past 20 years to great effect to
understand the spread of infectious disease [19], and is now a valuable tool in the arsenal
for the fight against disease [15].

There are many ways to model infectious diseases, ranging from simple models that
assign an individual a state and model the transitions between the states, to complex
agent-based models where every individual is unique, with their own attributes and con-
tact networks. As with all modelling, however, parsimony is a virtue. While a more
complex model may imitate reality better than a simple one, it becomes much more dif-
ficult to fit the models to data, identify parameter values, and take inference [15]. Fitting
these models can be a complex task in even the simplest of cases, due to the nature
of infectious disease data. Infectious disease data stand apart from non-communicable
diseases because it is both highly dependent and only partially-observable. By this we
mean that we cannot observe the transmission process of an infectious disease, only the
outcome; we can see who is infected, but not who infected them or when. This missing
information often makes computing the likelihood very difficult, and more often than
not impossible. In these cases we often turn to advanced statistical methods, such as
Monte Carlo Markov Chain (MCMC), to perform Bayesian inference to obtain posterior
distributions for the parameters of the model. These methods have revolutionised the
analysis of partially observed infectious disease data, and have been successfully applied
to a myriad of diseases [19] such as Foot-and-mouth [10] and SARS [20]. Unfortunately these
methods do not come without their problems. Firstly, non-standard and problem-specific
algorithms have to be designed in each instance to improve efficiency [19], and when the
models become more complex, or the population too large, the cost of computing the
likelihood can become very high [19]. The algorithms make use of common techniques
such as data augmentation to impute unobservable aspects of the data, such as infection
times. Sometimes the dependence in these augmented data can be unacceptably high,
and as a result the efficiency drops to a point where the algorithm is unusable. In these
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cases we are in need of an alternative method for making inference for infectious diseases.
One such possible alternative is known as Approximate Bayesian Computation (ABC).

ABC is a likelihood-free method of inference, also known as a simulation method. ABC
can provide us with approximate inference for the posterior of the model parameters. The
concept is very simple. We draw model parameters from a prior distribution, and use
them to simulate an outbreak. This is relativly easy to do in the case of infectious diseases,
even when the model is complex or the data is only partially observed. If our simulated
outbreak is “similar” to our data, then we accept the parameter draws as samples from
the approximate posterior distribution. The success of ABC methods for epidemic data
has been demonstrated on many occasions including for; HIV-Aids in Cuba [6], Equine
Influenza [1], Ebola in the Democratic Republic of Congo [32], and Bovine Tuberculosis in
both cattle, UK [8], and lions, South Africa [18]. Other sources show that a range of ABC
methods work for selection of disease outbreaks [19;22;23].

In this dissertation we will go through a selection of different ABC methods, explain
how they work, and then show how they can be applied to some simple datasets. We will
then take everything we have learnt and apply it to a complex spatio-temporal outbreak
dataset for Sugacane Yellow Leaf Virus. In §2 we explain a selection of models we use
for the outbreaks, and how we can simulate them. In §3 we detail a series of case study
datasets we will be using to test the ABC algorithms presented throughout this disserta-
tion. A general overview of ABC is given in §4. Then, in §5 to §9, we describe a selection
of ABC methods, providing algorithms in order to implement them, and showcasing them
on a series of case study datasets. After this we describe a complex spatio-temporal epi-
demic of Sugarcane Yellow Leaf Virus (SCYLV) in §10, before applying some of the ABC
methods to make inference on our model in §11. We detail some possible extensions to
our analysis of the SCYLV data in §12 that time did not permit us to undertake. Finally
we discuss our thoughts on the methods presented throughout this dissertation in §13, ad-
dressing some questions that have been raised, suggesting future work to be undertaken,
and giving our current judgements on the use of ABC for inference on epidemics.

2. How do we simulate the data?

There are a multitude of ways to model the spread of disease through a susceptible
population, from simple state-transition models such as the well known S-I-R model, to
household models, and agent based network models. The type of model we use depends
very much on the disease in question, the situation, and the type and detail of data we
have available. In this section we will go through some of the more fundamental models
that we will later utilise to demonstrate various ABC methods for different datasets.

2.1. S-I-R construction. One of the simplest ways to model an epidemic is the S-
I-R construction [17]. The S-I-R construction involves taking a closed population of N
individuals and dividing them into three independent sets;

• S - Susceptible. Individuals in this set are susceptible to infection, and will become
infected when they come into contact with an infected individual.
• I - Infected/infectious. Individuals in this set are infected, and in the simplest

case, also infectious. If these individuals come into contact with a susceptible
individual they will infect them. Individuals will remain in state I until they
recover.
• R - Recovered/removed. Individuals in this set have recovered from being infected,

have no affect on either of the other two sets if they come into to contact with them,
cannot become infected again, and will remain in the recovered state indefinitely.
Recovery grants immunity.
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The population mixes homogeneously (everyone has equal chance of coming into con-
tact with everyone else), and the S-I-R construction describes the process through which
the individuals move between the sets. The process could be considered from a purely
deterministic point of view, in which case we could model the transitions between the
states at each time-step using differential equations. Let β ≥ 0 be the rate of infection,
and γ ≥ 0 be the rate of recovery. For instance, β can be thought of as the proportion
of the susceptible population that become infected each time-step due to each infected
individual. Then,

dS

dt
= −βS(t)I(t),

dI

dt
= βS(t)I(t)− γI(t),

dR

dt
= γI(t),

where S(t), I(t), andR(t) are the number of susceptible, infected, and removed individuals
at time-step t, respectively.

Epidemics, however, are not deterministic processes, and while the deterministic con-
struction may give us some insights, it will miss a lot of the subtleties. For instance,
given two independent epidemics with the same starting conditions, same rates, and the
same assumptions, one may infect a large proportion of the population and one may die
off instantly, with probabilities dependent on the initial conditions and parameters. The
deterministic construction does not account for both of these outcomes at once, and so
it is necessary to use a stochastic construction of the S-I-R process. One of the simplest
and easiest to implement is known as the Chain-Binomial model.

2.2. Chain-Binomial. The Chain-Binomial [5] algorithm is a simple discrete-time, sto-
chastic SIR model. It works as presented in Algorithm 1.

When demonstrating this algorithm, we will choose β and γ such that the value of the
basic reproductive number, R0, lies between 1 and 3, calculated using the equation R0 =

N×β
(1−exp(−γ)) . This suggests a density dependent model. We will choose an Exponential prior

with mean 1 for both β and γ when simulating further outbreaks, which is equivalent to
putting a Uniform[0,1] prior on the infection and removal probabilities, pinf and prem.

2.3. The Gillespie Algorithm. The Gillespie algorithm [14] is the stochastic version of
the S-I-R construction. It is a relatively simple continuous time model for simulating an
epidemic. We again start with an initial population N which is segregated into 3 sets,
S-susceptible, I-infected, and R-removed, with S + I + R = N . At each time step, t,
we know the probability of an infection event, pinf , and of a removal event, prem. The
probabilities depend on the number individuals in each set, as well as the infection rate,
β, and the removal rate, γ. Thus at each time step, t, an event will occur, and we draw
whether it is an infection or removal event using their probabilities. If it is an infection
event increase the infectious population by one, and if it is removal event reduce the
infectious population by one. We continue this process until the infectious population
I = 0.

The rate at which infection events occur is given by rinf = β
N
SI, and the rate at which

removal events occur is given by rrem = γI. Thus the time until the next event of any type
occurs, τ , is Exponentially distributed with rate

(
β
N
SI + γI

)
. The probability of that

event being an infection event is then given by pinf =
β
N
SI

β
N
SI+γI

. Similarly the probability

of that event being a removal event is then given by prem = 1 − pinf = γI
β
N
SI+γI

. The

algorithm is given in Algorithm 2.
When demonstrating this algorithm, we will again choose β and γ such that the value

of the basic reproductive number, R0, lies between 1 and 3, calculated this time using the
equation R0 = N×β

γ
. This again suggests a density dependent model. We will continue
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Chain-Binomial model:

Inputs: Population size, N ; Infection rate, β; Removal rate, γ.

1. Initialise the process by stating the number of susceptible (S), infected (I), and re-
moved (R) individuals, with S + I + R = N at all times. We usually start with
S = N − 1, I = 1, and R = 0.

2. Begin at time-step t = 1 with the above, then,
(a) Draw the number of newly infected individuals in time-step (t+ 1), I∗, using

I∗ ∼ Binomial (S(t), pinf ) ,

where S(t) and I(t) are the number of susceptible and infectious individuals avail-
able at the end of time-step t, respectively. The probability that a susceptible
individual becomes infected is given by pinf = 1 − e−βI(t), where β ≥ 0 is the
infection rate of the process.

(b) Draw the number of newly removed individuals in time-step (t+ 1), R∗, using

R∗ ∼ Binomial (I(t), prem) ,

where I(t) is the number of infected individuals available at the end of time-step t.
The probability that an infected individual is removed is given by prem = 1− e−γ,
where γ ≥ 0 is the removal rate of the process.

(c) Update the states using

S(t+ 1) = S(t)− I∗,
I(t+ 1) = I(t) + I∗ −R∗,
R(t+ 1) = R(t) +R∗,

and set t = t+ 1.
3. Run the process for the T time-steps, or until the infected state reaches size zero.

Algorithm 1

to choose an Exponential prior with mean 1 for both β and γ when simulating further
outbreaks, which is equivalent to putting a Uniform[0,1] prior on the infection and removal
probabilities, pinf and prem.

3. The Case Studies

To demonstrate the various Approximate Bayesian Computation algorithms presented
in this dissertation, we will use a number of different case studies which exemplify different
features an epidemic could take on. In this section we will describe three case study
datasets we use to demonstrate the methods, which will be referred to throughout this
dissertation.

3.1. Smallpox Outbreak, Abakaliki, 1967. The Abakaliki dataset (see [31], page 125)
describes an outbreak of Smallpox in the small village of Abakaliki, Nigeria in 1967. The
data set consists of m = 30 infected individuals out of a total N = 120 susceptible individ-
uals. The data also contains temporal information on when each infected individual was
detected (often taken to be the recovery time), but we will often just use the final size data.
The detection times are: (0, 13, 20, 22, 25, 25, 25, 26, 30, 35, 38, 40, 40, 42, 42, 47, 50, 51, 55, 55,
56, 57, 58, 60, 60, 61, 66, 66, 71, 76).
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Gillespie algorithm:

Inputs: Population size, N ; Infection rate, β; Removal rate, γ.

1. Initialise the process by stating the number of susceptible (S), infected (I), and re-
moved (R) individuals, with S + I + R = N at all times. We usually start with
S = N − 1, I = 1, and R = 0.

2. Begin at time-step t = 1 with the above, while I > 0 or t < T .;
i. Draw the time until the next event, τ ∼ Exp

(
β
N
SI + γI

)
.

ii. Draw u ∼ Unif [0, 1].

iii. If u <
β
N
SI

β
N
SI+γI

, then

· set S = S − 1; I = I + 1,
otherwise,
· set I = I − 1; R = R + 1.

iv. Set t = t+ τ , and record (t, S, I, R).

Algorithm 2. The algorithm presented here is adapted from Kypraios et al.
(2016) [19].

3.2. Gastroenteritis outbreak, South Carolina, 1996. The Gastroenteritis dataset
describes an outbreak of Gastroenteritis in South Carolina in January 1996, original
reported by Caceres et al. (1998) [9]. While Gastroenteritis is commonly spread by con-
taminated food, in this case, person-to-person spread is believed to have occurred [? ]. Of
the Ns = 89 staff working on the ward during the study period, there were ms = 28
cases, and of the Np = 91 patients who were hospitalised for more than one day during
the outbreak, there were mp = 10 cases. The data contains information on the date of
the onset of symptoms for all cases.

Following Britton et al. (2002) [7] and Kypraios et al. (2016) [19], we restrict our at-
tention to only the staff population, as the patient population is open and there were
relatively few cases. The outbreak lasted for a total of 7 days, and the number of cases
on each day, and all days thereafter, is given by (1, 4, 2, 3, 3, 10, 5, 0).

3.3. Measles outbreak, Honkajoki, 1989. The Measles dataset describes an outbreak
of Measles in a school in Honkajoki, Finland in 1989 [26]. There are three types of students,
with a type k ∈ (0, 1, 2) student having received k doses of Measles vaccination. The data
is final size data, and is summarised in Table 1.

Vaccination status, k 0 1 2

Total number of infected individuals, mk 18 11 6
Total number of individuals, nk 79 189 149

Table 1. A summary of the Measles dataset described in §3.3.

4. What is Approximate Bayesian Computation?

Real data often come with many complications which make analysis difficult and as such
require the use of advanced statistical methods, this is doubly true for epidemic data. In
such cases, a widely used tool is Monte Carlo Markov Chain (MCMC), which works well
in many instances. In cases, however, that require a great amount of data augmentation,
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the MCMC method and algorithms can become quite ineffective. Approximate Bayesian
Computation (ABC) is a collection of methods that can be viewed as an alternative to
MCMC and other such methods.

The idea behind ABC is deceptively simple. Assume we have data that is particularly
complex to analyse, but the process we believe it was generated from is reasonably simple
to simulate. Then, if we can simulate a sufficiently similar set of data using that process,
the parameters that were used to generate the simulation can be seen as draws from the
approximate posterior distribution for the parameters that generated the data.

Epidemics in particular are reasonably easy to simulate. In the simplest case, we merely
need to know the number of susceptible, infected, and recovered individuals at each time
step, and the probability of moving between each set. On the other hand, the data
for epidemics is often very difficult and expensive to obtain, and is often characterised
by missing information. For instance, the epidemic process is only partially observable,
meaning for example, that we can see who was infected, but not necessarily when they
were infected or who infected them. This means that MCMC methods require large
amounts of data augmentation, the excess of which leads to high levels of dependency
between the accepted draws, which greatly reduces the efficiency of the algorithm. Thus
we can see the possible usefulness of ABC methods for epidemics.

5. Exact Bayesian Computation

We begin by looking at Exact Bayesian Computation (EBC), which can provide us
with exact draws from the posterior distribution of θ. In this section we go over the
ideas behind EBC and present an algorithm for implementing it. We then look at some
features of the EBC, some simple non-epidemic examples where EBC can be applied, and
its usefulness in the epidemic context.

In EBC, we draw parameter values from a prior distribution and simulate the data
using a model that we believe it could be generated from. If the simulation exactly
matches the data, we accept the draw as an exact draw from the posterior, otherwise we
reject it. Thus an algorithm for the EBC is presented in Algorithm 3.

Exact Bayesian Computation (EBC):

Inputs: Data, X; Model, M(θ); Prior on θ, π(θ).

1. Draw a realisation, θ∗, of the parameters from their prior distributions π(θ).
2. Simulate an outbreak, χ, using the model M(θ) and the parameter draw θ∗.
3. If χ = X then accept the parameters θ∗ as an exact draw from the posterior distribution

for θ, and record θ∗, otherwise reject θ∗.
4. Repeat steps 1-5 until we have T accepted draws from the approximate posterior

distribution for θ.

Algorithm 3. The algorithm presented here is adapted from Kypraios et al.
(2016) [19].

The EBC algorithm can provide us with independent samples from the exact posterior
distribution for θ, which theoretically makes it a very useful tool, arguably even better
than MCMC in one sense since the samples are not dependent. However, because we have
to match the data exactly, the EBC can only be used with discrete data, as the acceptance
probability with continuous data will be 0. Secondly, the more data we have to match, the
smaller the acceptance probability becomes, and it quickly becomes prohibitively small.
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Thus, in practice, Approximate Bayesian Computation, which only provides approximate
draws from the posterior distribution for θ, is often the preferred choice.

Example 1 (Acceptance Probability of the EBC). We mentioned that the acceptance
rate of the EBC can be prohibitively small for use in practice. For instance, assume that
we generate an outbreak using the simple chain-binomial algorithm given in Algorithm 1.
Let this outbreak begin with 1 infected individual (m = 1) and 29 susceptible individuals
(so N = 30), and we let β = 2

30
and γ = 1, so that R0 ≈ 3.16 using the equation

given in §2.2. For a particular epidemic that we generated using these settings, a total
of 19 individuals out of 30 became infected. The states at each time-step are given in
Table 2. The likelihood of generating this exact epidemic (with infections and recoveries
at the correct times) under these conditions was calculated to be 0.000000001781 or
1.781 × 10−09. Assuming that we fix these parameter values for β and γ, it would take
around 500 million more simulations to find even one accepted simulation. Now it is
definitely possible for this outbreak to be generated by other sets of parameters, which
means the acceptance probability of the EBC isn’t quite this low, but it does not increase
so much as to make the EBC a viable method for even this simple epidemic.

Time-step 1 2 3 4 5 6 7→
S 29 26 21 13 12 11 11
I 1 3 6 9 2 2 0
R 0 1 3 8 16 17 19

Table 2. The states of the simulated ourtbreak from Example 1 at each time-step.

For instance, we ran the EBC algorithm to try and find the posterior distribution
for the parameters β and γ. We ran the algorithm using the same model the data was
generated from, and made the mean of the priors equal to the true parameter values.
This is a far more generous situation than we could ever hope for in reality, but even so
we ran the algorithm for 36,545,423 simulations which took 9418 seconds (157 minutes)
and we did not even find one accepted simulation. �

Sometimes, however, we do not have to match the entirety of the data exactly. In cases
where there exists a sufficient statistic for the process, we can merely find simulations
that exactly match the sufficient statistic of the data. Before we continue it is worth
defining what a sufficient statistic is.

Definition 1 (Sufficient statistic [29]). Let the random variables X1, . . . , Xn have joint
probability density function (pdf) given by f(x1, . . . , xn|θ), that depends on parameter θ.
The statistic T (X) = g(X1, . . . , Xn) is a sufficient statistic for θ if and only if the pdf can
be factorised as

f(x1, . . . , xn|θ) = φ {T (X)|θ}h(x1, . . . , xn),

where φ(·) is a function that depends on the data, x1, . . . , xn, only through T (X), and
h(x1, . . . , xn) does not depend on θ. �

Example 2 (Sufficient statistic for a Poisson distribution). For instance, assume that
random variables X1, . . . , Xn are independent and identically Poison distributed with
mean λ, then the sum T (X) = X1 + · · · + Xn is a sufficient statistic for λ. It may not
be completely obvious at first why this is the case. First consider the joint probability
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distribution,

P [X = x] = P [X1 = x1, . . . , Xn = xn] ,

= P [X1 = x1] . . .P [Xn = xn] ,

=
e−λλx1

x1!
. . .

e−λλxn

xn!
=

e−nλλx1+···+xn

x1!× · · · × xn!
,

=
1

x1!× · · · × xn!
e−nλλT (x),

by independence. Then it can easily be seen that φ {T (X)|λ} = e−nλλT (x) and h(x1, . . . , xn) =
1

x1!×···×xn! , so T (X) is a sufficient statistic for λ. �

Unfortunately, sufficient statistics are often only available in simple cases with tractable
likelihoods, which is often not the case with problems that require the use of ABC meth-
ods. It is worth noting that there are some simple epidemic models where sufficient
statistics are available, but we will not be going into details about these [19].

6. Approximate Bayesian Computation

It is fairly clear at this point, that for most practical purposes, EBC is not a viable
method. This, however, does not mean that the concepts that it employs are completely
useless. If we were to be a bit more lenient in which simulations were acceptable, looking
for approximate matches as opposed to exact matches, then we should be able to improve
the acceptance rate, and even use these methods in cases with continuous data. This is the
idea behind Approximate Bayesian Computation (ABC), which can provide approximate
(as opposed to exact) draws from the posterior distribution for the parameters, θ. In this
section we will explain what is needed to use the ABC method, and present an algorithm
for it, before applying the method to a series of case study datasets.

6.1. ABC: The algorithm. To use an ABC algorithm we will require extra informa-
tion and tools compared the EBC. We will replace the sufficient statistics with a set of
summary statistics, S(·), which we believe capture the qualities of the data that we are
interested in well. We then require a distance function, d(·), to measure how different
our simulations are to our data, based on their summary statistics. Finally we need a
tolerance, ε, which tells us which simulations are acceptable in this circumstance, based
on their distance.

Let us say we have data X, which we believe to have been generated by a process M(θ).
We replace our sufficient statistics, T (X), from the EBC, with summary statistics S(X),
and define the distance function d (S(X), S(χ)), to measure how different the summary
statistics of the data, X, are from the summary statistics of a simulated observation, χ.
We let the tolerance be ε. We present an algorithm for the ABC in Algorithm 4.

It makes sense that our choices for the prior distributions on θ, π(θ), the process as-
sumed to generate the original data, M(θ), the summary statistics, S(·), the distance
function, d(·), and the tolerance, ε, all have a great impact on the efficiency and effec-
tiveness of the ABC algorithm.

6.2. ABC: Examples. To see the effectiveness of the ABC we again begin with an ex-
ample of simulated data, before moving on to applying the methodology to the Abakaliki
and Gastroenteritis datasets.
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Approximate Bayesian Computation (ABC):

Inputs: Data, X; Model, M(θ); Prior on θ, π(θ); Summary statistics, S(·); Distance
function, d(·).

1. Draw a realisation, θ∗, of the parameters from their prior distributions π(θ).
2. Simulate an outbreak, χ, using the model M(θ) and the parameter draw θ∗.
3. Calculate the summary statistics, S(χ), for the simulated data, χ.
4. Using the distance function, d(·), calculate the distance between the summary statistics

of the data and simulated observation, d (S(X), S(χ)).
5. If d (S(X), S(χ)) ≤ ε then accept the parameters θ∗ as approximate draws from the

posterior distribution for θ, and record θ∗, otherwise reject θ∗.
6. Repeat steps 1-5 until we have T accepted draws from the approximate posterior

distribution for θ.

Algorithm 4. The algorithm presented here is adapted from Kypraios et al.
(2016) [19].

Example 3 (ABC for simulated data). Let the population consist ofN = 200 individuals,
and we will begin with m = 1 infected. We generated an outbreak using the Chain-
Binomial algorithm (Alg. 1) with the parameter values β = 0.0015 and γ = 1

7
. This

resulted in 157 infected individuals and lasted 79 days.
As stated, we require additional tools to be able to use the ABC, and we have to

make certain choices for the form of these tools. In this instance, for the summary
statistics, S(·), we choose the final size of the epidemic, M , and the time when the final
infected individual recovers, T(I=0), also called the duration of the epidemic. These are
common features of epidemics that might be of interest. Ideally we want a set of summary
statistics that are correlated with the parameters of interest [22], though it may not always
be obvious which summary statistics are best. As a minimum we need at least as many
summary statistics as parameters in the model, but too many can also lead to greatly
reduced acceptance rates, as well as distorting the approximation of the posterior [28].

For the distance function, d(·), we choose the L2-norm=
√

(x− y)2, and apply it to each
summary statistic separately, meaning we have multiple tolerances. When considering
which distance metric we use, the key feature is that it gives the correct weight to each
summary statistics based on their importance. A summary statistics importance could be
categorised by how well it infers the parameters we are interested in. It is also important
to balance scale. For instance, if one summary statistic ranges from (0,1), and another
has average values in the hundreds, then the second will dominate any distance function
that combines the summary statistics equally and only requires one tolerance, unless they
are rescaled.

The Chain-Binomial algorithm in this case is very easy and efficient to simulate, so
as a preface to help us identify a suitable tolerance, ε, we generate 1 million simulations
and identify different tolerances based on their acceptance rate and ability to identify
the correct parameter values. We choose Exp(1) priors for both β and γ, as this is
mathematically justified as explained in §2.2, and would be our choice if we knew nothing
about the parameters.

It took around 557 seconds to generate these 1 million simulations, and we present the
results of the pilot run in Table 3 below.
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Tolerance (10,10) (20,20) (30,30) (40,40) (50,50)
Accepted samples 9 36 106 337 147871
Acceptance rate 0.0009% 0.0036% 0.0106% 0.0337% 14.7871%

E[β|X] 0.001929 0.002132 0.002440 0.003072 0.979855
E[γ|X] 0.2298 0.2434 0.2575 0.26972 0.15001

Table 3. A summary of the pilot run for the ABC for the simulated data. We are
aiming for β = 0.0015 and γ = 0.1429.

In this special case we know the values of the parameters that we are aiming for,
β = 0.0015 and γ = 0.1429. From Table 3 we can see that none of the tolerances we
have selected give posterior means equal to these parameters, but we can see that the
smaller the tolerance the closer we are. The error at the smaller tolerances may be in
part due to the small number of samples, and the error at the larger tolerances is due
to accepting more and more samples that look less and less similar to the real data. For
instance, at the (50,50) tolerance, we would accept even outbreaks that infected 50 fewer
individuals than the real data and last 50 time steps longer. Since the disease infected
157 individuals and lasted 79 days, one that infected 107 individuals and lasted 129 days
would look rather different. Also note that the population size is 200, and a (50,50)
tolerance will accept simulations that infect less than 207 individuals, so all parameter
sets that infect the whole population between 29 and 129 time-steps will be accepted.
This essentially means there is no upper limit on the β values that are accepted, as long
as the γ values compensate by being smaller. We can see this evidenced in the results.

In the tolerances we have chosen to display, we have given equal weighting to both the
summary statistics, but it may be that we believe that the number of infected individuals
is better at isolating the correct posterior distributions than the epidemic duration, or
vice versa. We can see from Figure 1 the distances of the most relevant samples which
may help us pick tolerances, for instance, we can see if a small increase to a tolerance
will make a large increase in the acceptance rate. As it stands, we believe that the final
size will infer the ratio between β and γ, and the duration will infer the scale of the
parameters, so we give equal weighting to both. The other benefit of a pilot run is that
we get an initial idea for what the posterior mean may be, and we can update our prior
with this information. For instance, we are currently using Exp(1) priors for both β and
γ, which assumes they have mean 1, however this pilot runs shows us that even at large
tolerances, the mean of β is less than 0.005 and the mean of γ less than 0.25. Adopting
these estimates into our prior should improve our acceptance rate.

We now wish to run our ABC algorithm with a chosen tolerance to obtain 1000 samples
from the approximate posterior distribution for β and γ. We adopt the findings of the
pilot run into our priors, and select an Exp(2000) prior on β and an Exp(4) prior on
γ. Since this should improve our acceptance rate, we choose our tolerance to be (10,10).
This ABC algorithm took 428,988 simulations to find the 1000 accepted samples, taking
263 seconds. The results are presented in Table 4. We can see instantly that updating
our priors has made the acceptance rate jump from 0.0009% to 0.23%, which is over
250 times larger. With our knowledge of the true parameters, we can also see that the
estimates of the posterior means are closer to the true estimates, still slightly higher, but
well within one standard deviation for both β and γ. Overall the ABC seems have done
a fine job of approximating the posterior distribution of β and γ in this case.

�
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Figure 1. A plot of the distances for the best matching simualted outbreaks. We
have chosen our tolerance to be (10,10)

E[β|X] sd(β|X) E[γ|X] sd(γ|X) Simulations Acceptance rate Time
0.0017 0.0004 0.1892 0.051 428,988 0.23% 263 seconds

Table 4. A summary of the ABC results for the simulated data. We are aiming for
β = 0.0015 and γ = 0.1429.

Example 4 (ABC for Abakaliki data). We next wish to perform inference on a Smallpox
outbreak in Abakaliki, Nigeria, as detailed in §3.1. We will make use of the temporal data
of the outbreak, which contains information on the detection times, which we will take
to be the recovery times following Kypraios et al. (2016) [19] and O’Neill et al. (1999) [25],
of all 30 infected individuals from the population of 120. The detection (recovery) times
are detailed in §3.1.

Since we are now utilising different information, it makes sense to choose new summary
statistics that utilise this new information. To require all the recovery events to occur at
around the same time as in the data would be very restrictive on the number simulations
we could accept. What may be a better metric, as far as the ABCs acceptance rate is
concerned, is whether or not the simulated outbreak is progressing at a similar rate as
the data. For this reason, following Kypraios et al. (2016) [19], we take the summary
statistics, S(·), to be the number of recovery events in a series of time periods, and the
time when the final infected individual recovers, T(I=0). We take the time intervals to
be [0, 13], (13, 26], (26, 39], (39, 52], (52, 65], (65, 78], (78,∞]. Thus, the summary statistics
for the Abakaliki dataset are given by:

S(XAbakaliki) = (2, 6, 3, 7, 8, 4, 0, 76).
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For the distance function, we wish to combine the 8 summary statistics into one number,
weighted on their importance and their scale. We note that the final summary statistic,
TI=0, is anywhere between 10 and 50 times larger than all the other summary statistics,
so we may wish to scale this down. Again following Kypraios et al. (2016) [19], we choose
the distance function to be:

d(XAbakaliki, χ) =

 7∑
i=1

(bi − bχi )2 +

(
T(I=0) − T χ(I=0)

50

)2


1
2

,

where bi is the observed number of recoveries in time interval i, and T(I=0) is the observed
epidemic duration, for the Abakaliki data. The superscript, χ, denotes similar notions
for the simulated data.

Given that we only have temporal information on when the first recovery occured, we
do not know how many infected individuals there were at the beginning of the epidemic.
With this in mind, we wish to edit the model to reflect our uncertainty in this area. To
do this, we begin the epidemic with one infected individual and run the process until
the first recovery. We then discard everything that happened before the first recovery,
and take the current states as the starting conditions of the epidemic, before letting it
continue. For instance, we start with 1 infected individual, we may then have 5 infected
individuals by time step 10, say, when the first recovery occurs. So we discard time steps
0 to 9, make time step 10 the new first time step, time step 1, and the epidemic we are
interested in now starts with 1 recovered individual and 4 infected.

Again, we do a pilot run of one million simulations in order to choose an appropriate
tolerance, ε, and again we choose Exp(1) priors for both β and γ. The results of the pilot
run are presented in Table 5.

Tolerance 5 5.428 6 8 10 12
Accepted samples 7 115 8069 8697 11943 245969

Accepted rate 0.0007% 0.0115% 0.8069% 0.8697% 1.1943% 24.5969%
E[β|X] 0.0011 0.0021 0.0069 0.0069 0.2033 0.9118
E[γ|X] 0.0995 0.3718 1.3244 1.3329 1.0782 0.2738

Table 5. A summary of the pilot run for the ABC for the Abakaliki data.

While we may not know the true values of the parameters in this case, we can see from
the pilot run a pattern in the estimates, similar to that which we saw in the Example 3.
The estimates for both β and γ mostly get larger and further from zero as the tolerance
gets larger.

This time we will not alter our prior distributions since the estimates of the posterior
mean are much more varied across the tolerances, but we will use tolerance 5.428. We
choose this tolerance since the estimates at the next tolerance are more than tripled,
which given we have 115 samples seems a bit extreme. We ran the ABC algorithm to
obtain 1000 samples from the approximate posterior distribution for β and γ, the results
of which are presented in Table 6.

E[β|X] sd(β|X) E[γ|X] sd(γ|X) Simulations Acceptance rate Time
0.002 0.002 0.368 0.33 7,685,538 0.013% 5408 seconds

Table 6. A summary of the ABC results for the Abakaliki data.
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The ABC algorithm took 7,685,538 simulations to find the 1000 accepted samples,
taking 5408 seconds (90 minutes). The results have stayed fairly consistent with the
estimates from the pilot run at this tolerance, and the acceptance rate has also stayed
approximately the same. We notice that γ has a very large variance, suggesting we are
rather uncertain about our estimate. It may be that we need a smaller tolerance in order
to be more confident in our estimate of γ.

We are fortunate in this case that the Abakaliki dataset is well known, and has been
analysed many times before. We compare our results to those of Bailey & Thomas
(1971) [2] who utilised likelihood based methods to estimate the parameters of their
model. Their mean (standard deviation) estimates were β = 0.00168(0.00047) and
γ = 0.162(0.050). Since they used a different method and most probably assumed a
slightly different model with slightly different characteristics, we would not expect our
results to match exactly, however, the fact that our estimate for β is close is encouraging.
Our estimate for γ is a bit large, however, the posterior distribution for γ is quite skewed,
with the median being 0.2626, which is much closer. It may be that our tolerance is too
large as we also notice that, due to our uncertainly in γ, the Bailey & Thomas estimate
is well within one standard deviation of our estimate.

�

Example 5 (ABC for Gastroenteritis data). Finally, we wish to perform inference on
a Gastroenteritis outbreak in South Carolina, that was belived to have been spread by
human contact, as detailed in §3.2. Similiarly to the Abakaliki dataset, the Gastroeneritis
dataset contains temporal data on the outbreak, which we can utilise in our analysis. The
temporal data in this case is the onset of symptoms for all infected individuals, but we
will agian take this to be the recovery times, following Kypraios et al. (2016) [19] and
O’Neill et al. (1999) [25]. The detection (recovery) times are detailed in §3.2.

Following the Abakaliki example, we take the summary statistics, S(·), to be the num-
ber of recovery events in a series of time periods, and the time when the final infected
individual recovers, T(I=0). Following Kypraios et al. (2016) [19], we take the time intervals
to be [0, 1], (1, 2], (2, 3], (3, 4], (4, 5], (5, 6], (6, 7], (7,∞]. Thus, the summary statistics for
the Gastroenteritis dataset are given by:

S(XGastro) = (1, 4, 2, 3, 3, 10, 5, 0, 7).

For the distance function also, we follow the example of the Abakaliki dataset. We see
this time, however, that the duration of the outbreak is not an order of magnitude larger
than the other summary statistics, however we will use the same distance function for the
sake of convenience and so that we can compare our results to Kypraios et al. (2016) [19]

who did the same. We choose the distance function to be:

d(XGastro, χ) =

 8∑
i=1

(bi − bχi )2 +

(
T(I=0) − T χ(I=0)

50

)2


1
2

,

where bi is the observed number of recoveries in time interval i, and T(I=0) is the observed
epidemic duration, for the Gastroenteritis data. The superscript, χ, denotes similar
notions for the simulated data.

For exactly the same reasons we edit our model to start with a randomly assigned
number of infected individuals, and choose Exp(1) priors for both β and γ. The results
of our pilot run are presented in Table 7.

The pilot run took 347 seconds to simulate its one million outbreaks. Again we do
not know the true values of the parameters, but again we see the patterns with tolerance
evidenced. The estimates of the posterior means seem to get smaller as the tolerance
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Tolerance 4 4.5 5 6 8
Accepted samples 27 255 900 11748 17829
Acceptance rate 0.0027% 0.0255% 0.0900% 1.1748% 1.7829%

E[β|X] 0.0117 0.0107 0.0093 0.0095 0.0272
E[γ|X] 1.8105 1.8353 1.6307 1.3913 1.4199

Table 7. A summary of the pilot run for the ABC for the Gastroenteritis data.

increases, however we note that there is little change between the estimates for tolerances
4 and 4.5, suggesting that we can use the larger tolerance 4.5 to increase the acceptance
rate without losing accuracy. It is also worth noting that the acceptance rate does not
increase linearly with the tolerance, as in all the other examples, so there is no reason to
believe that the accuracy will increase linearly as the tolerance decreases, either.

Since the acceptance rates are reasonable at relatively low tolerances, we will keep our
priors the same, and will use a tolerance of 4.5. Our ABC algorithm took 1518 seconds
(25 minutes) to find 1000 accepted samples from the approximate posterior distribution
for β and γ from 4, 333, 099 simulations. The results are presented in Table 8. The
results have again remained fairly consistent with the pilot run, including the acceptance
rate. We notice that the estimate for γ is slightly higher than in the pilot however. It is
also worth noting that the median for γ was 1.6797, so the posterior distribution is quite
skewed.

E[β|X] sd(β|X) E[γ|X] sd(γ|X) Simulations Acceptance rate Time
0.0107 0.0035 1.9506 1.1577 4,333,099 0.023% 1518 seconds

Table 8. A summary of the ABC results for the Abakaliki data.

This dataset has been analysed before, but previous analyses have used a range of
methods quite different to our own. For this reason we would not expect our inference
to match exactly, and it may be that we cannot compare our estimates directly as our
parameters are not equivalent. Kypraios et al. (2016) [19] used a different model such that
their infection rate β∗ was equivalent to N×β in our notation. Converting their estimates
to our notation they had posterior mean estimates of β = 0.0153 and γ = 1.14. Britton &
O’Neill (2002) [7] on the other hand used a model which included a random social structure
(as opposed to one with a homogeneously mixing population), and obtained estimates of
β = 0.061 and γ = 1.47. We can see that in general these estimates from all three models
are similar, and the models are quite different so we would expect reasonable differences,
but the similarities are still reassuring. We can also compare the results based on the
value of R0 that each model estimates. Kypraios et al. (2016) [19] estimates their own R0

value to be 1.14, and Britton & O’Neill’s to have a mean of 1.17 and a median of 1.14.
We calculated our own R0 value to have a mean of 1.67 and a median of 1.03, using the
equation provide in §2.2. As we can see there is some general agreement between the
different analyses, based on this summary statistic, which lends credence to our results.
However, our inference may be able to be improved by re-running the algorithm with a
stricter tolerance.

�

7. Coupled Approximate Bayesian Computation

The ABC algorithm, while performing reasonably well in terms of estimating the pa-
rameter values of the simple models we have presented it, does have an issue with its
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acceptance rate. We can improve on the acceptance rate of the ABC by utilising a dif-
ferent algorithm known as Coupled Approximate Bayesian Computation. In Coupled
ABC, we can seperate the parameters from the simualtion, such that we can simulate
one outbreak, and choose the parameter values that make it best match the data. In
this case, we do this by utilising a different model for simulating the outbreaks, known
as the Sellke construction [30]. Unfortunately, this model does not concern any temporal
elements of the data, so can only be used in cases where the final size is the only data
we have/use. Since it is not uncommon for the only data available to be final size data,
this coupled ABC algorithm is still useful in practice. It is possible to use the Coupled
ABC and utilise temporal information, but it is a different process than what is presented
here. We begin by explaining how this new model for simulating epidemics works, before
explaining how the coupled ABC utilises its benefits. We then present an algorithm for
coupled ABC, and apply the coupled ABC algorithm to the case study datasets.

7.1. Sellke construction. The S-I-R construction of the epidemic process may be one of
the most intuitive, but it is far from the only option. In cases where we are not interested
in the temporal development of an epidemic, but merely the final size, we can make use
of the Sellke construction [30]. The Sellke construction is mathematically equivalent to the
Gillespie algorithm, it just goes about things in a different way [16].

The basic concept behind the Sellke construction is that every individual has a personal
threshold, Ti, i ∈ (1, . . . , N). If an individual becomes infected they have a personal in-
fectious period, Ii. During this period they are infected/infectious, and after this period
they are removed. While an individual is infectious, they put out infectious pressure λ
per unit time step, which is split between all other individuals. If a susceptible individ-
uals total amassed infectious pressure goes above their personal threshold, Ti, then they
become infected for a period of length Ii. When it comes to simulating an epidemic in
this way, there are lots of simplifications that can make the process more computational
efficient.

We begin with an initial total population size of N individuals, with m of those being
infectious, leading to a susceptible population size of N −m individuals. We often take
m = 1.

We first draw independent infectious periods for every individual from the infectious
period distribution f(I), which in this case we take to be I ∼ Exponential(1). In total
we will draw N infectious periods; m for the initial infected individuals, and then an
additional N −m for the susceptible individuals for if they become infective. These will
be indexed by I1, . . . , Im, Im+1, . . . , IN .

We next draw the thresholds of the susceptible individuals independently from the
threshold distribution, which we again take to be T ∼ Exponential(1). We will draw
thresholds for all N individuals in the population, T1, . . . , TN , but since the first m are
already infected, we will set their thresholds to zero, T1 = · · · = Tm = 0. These thresholds
are unordered. We move forward with the assumption that m = 1, so only T1 = 0.

Let λ be the infection rate. While an individual is infectious (i.e. they have been
infected for less time than their infectious period) they contribute λ infectious pressure per
unit time-step, which is split evenly between all the other individuals in the population.
So for each unit time-step when individual i is infectious, they contribute λ/N infectious
pressure to each other individual in the population. Arguably, this should be λ/(N − 1),
however, in sufficiently large populations this makes little difference, and using N makes
the equations neater. For the infected or recovered individuals, (individuals are recovered
when they have been infected longer than their infectious period), the infectious pressure
does not matter, but for the susceptible individuals their ‘pool’ of infectious pressure
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increases, moving them closer to becoming infected. Individual i is then infected if their
total ‘pool’ of infectious pressure exceeds their personal threshold Ti.

Let us now consider the population ordered ascendingly by their thresholds, we have
T(1) ≤ T(2) ≤ · · · ≤ T(N). So we can view the above as an individual becomes infected if
their threshold is less than the total sum of the infectious periods that have come before
multiplied by λ/N . That is, individual (i) becomes infected if

T(i) ≤
λ

N

(i−1)∑
j=1

Ij.

As a simple example, six sequential infectious individuals with infectious periods of one
unit time-step, I1 = · · · = I6 = 1, is equivalent to one infectious individual with an in-
fectious period of six unit time-steps, I ′1 = 6. The next individual, in the sequence of as-
cendingly ordered thresholds, will become infected if their threshold T(i+1) ≤ λ

N

∑6
j=1 Ij =

λ
N
I ′1 = λ

N
6. Since we are not interested in any temporal aspects of the epidemic, it does

not matter whether all the infectious periods happen at overlapping times or sequentially.
Let L̃i be the additional infectious pressure necessary to infect individual (i+ 1) given

that individual (i) is infected, that is L̃i = T(i+1) − T(i). Then L̃i ∼ Exp(N − i). Thus,
in the case when m = 1, a second person is infected if

L̃1 = T(2) − T(1) = T(2) ≤
λ

N
I1,

and a third person is then infected if

L̃1 + L̃2 = (T(2) − T(1)) + (T(3) − T(2)) = T(3) ≤
λ

N
(I1 + I2),

and so on. If we times both sides by N we can let Li = NL̃i so that now Li ∼
Exponential(N−i

N
) and a second individual becomes infected if L1 ≤ λI1 and so on.

Thus, we can calculate that there are M new people infected if for all k ∈ (1, 2, . . . ,M),

k∑
i=1

Li ≤ λ
k∑
i=1

Ii. (1)

Alternatively, we could think of this as

min

{
m : T(m+1) =

m∑
i=1

Li > λ

m∑
i=1

Ii

}
(2)

is the total number of infected individuals in the epidemic. Thus the simplest way of
simulating an epidemic under the Sellke construction is given in Algorithm 5.

Sellke Construction Epidemic:

Inputs: Population size, N ; Infection parameter, λ.

1. Initialise the epidemic with m = 1 infectious individuals and N −m susceptible indi-
viduals.

2. Draw Ii ∼ Exponential(1) and Li ∼ Exponential(N−i
N

) for i ∈ (1, ...N).
3. Calculate the final size of the epidemic using Eq.1 or Eq.2 for a given λ.

Algorithm 5. The algorithm presented here, and Equations 1, 2, and 3, are adapted
from Kypraios et al. (2016) [19].
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We can see that using Eq. 2 we can calculate the final size of the epidemic for any
value of λ. If we are interested in a particular final size, we can find all the values of λ
that produce that final size for a given simulation. That is for

λ ∈

[
max

1≤k≤M−1

{∑k
i=1 Li∑k
i=1 Ii

}
,

∑M
i=1 Li∑M
i=1 Ii

)
, (3)

M total people are infected. It may be that the upper limit of the interval is smaller
than the lower limit; this represents that when M individuals are infected, at least M +1
individuals will be infected.

7.2. Coupled ABC: The algorithm. The Sellke construction benefits from the idea
of coupling. We can separate the parameter, λ, from the simulation. Thus we only have
to simulate once and can test different λ values to see what final size they result in (as
opposed to having to run a new simulation for every λ value). In addition to this, we can
even use analytical results (Eq.3) to ‘bin’ λ and show the final size for each interval of λ.
For instance it may be that for all values of λ ∈ (2, 4) we have a final size of 10, and that
if we go even slightly above 4 we have a final size of 15. Figure 2 demonstrates the final
size of a simulated outbreak for each interval of λ.
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Figure 2. The final size of a simulated epidemic for each interval of λ.

As far as the ABC is concerned, this is extremely useful, as instead of drawing the
parameter from a prior distribution, we can simply simulate an outbreak and choose the
value (or range) of the parameter that best matches our data, thus significantly reducing
the computational burden and increasing the acceptance rate. We call this algorithm
the coupled ABC (cABC). Technically, the cABC algorithm presented here is the 2-stage
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coupled ABC algorithm of Neal (2012) [23], however we will refer to it as the coupled ABC
algorithm. Stage 1 of algorithm is presented in Algorithm 6.

Coupled ABC (cABC) - Stage 1:

Inputs: Data, X; Model, M(λ); Summary statistics, S(·); Distance function, d(·); Kernel
function, Kε(·).
1. Simulate an outbreak with λ = 1 using Algorithm 5.
2. Calculate the intervals for λ for which M individuals are infected using Eq.3, with
M ∈ (1, . . . , N). Note that there may be less than N intervals, when M individuals
infected implies infecting atleast M + 1.

3. Record the intervals of λ, Ai, which give final sizes for which d(S(X), S(χi)) ≤ ε,
as well as their weighting, ki calculated using the kernel Kε(d(S(X), S(χi))) (details
below). Call B the union of all the accepted intervals Ai.

4. Repeat steps 1-3 until there have been T accepted simulations (the set B is non-empty).

Algorithm 6. The algorithm presented here is adapted from Neal (2012) [23].

To use this algorithm we will require a summary statistic S(·), a distance function d(·),
a tolerance ε, and we introduce a kernel function Kε(·), which is used to weight each
simulated outbreak/interval for λ. A kernel function can be used in any ABC algorithm
to quantify how much we penalise divergence from the data, though we have omitted to
do so thus far. In this case the obvious choice for the summary statistic is the final size of
the epidemic, as the Sellke construction does not consider any temporal elements of the
outbreak, and it allows us to take advantage of the coupled property. For the distance
function, unless there are any special requirements of the data, we will normally just use
the L2 − norm, with tolerance ε ≥ 0 chosen appropriately for the data. There are two
main choices for the kernel, Kε(·). The first being a simple step function which gives 1
if d(S(X), S(χi)) ≤ ε, and 0 otherwise. The other is the discrete Epanechnikov kernel
given by

Kε(d(S(X), S(χi))) ∝

{
1−

∣∣∣S(X)−S(χi)
ε

∣∣∣ , if d(S(X), S(χi)) ≤ ε ,

0, otherwise.
(4)

Stage 1 provides us with independent and identically distributed sets B1, . . . , BT [23].
If the prior on λ, π(λ), is a uniform distribution, and we use a step kernel function, Kε,
then the sets are independent intervals drawn from π(λ|X, ε) [23]. Stage 2 is used to find
draws from the approximate posterior distribution for λ given a specific choice of prior
and kernel. Let Lπ = max1≤t≤T {supλ∈Bt |π(λ)|}. Stage 2 of the algorithm is then given
in Algorithm 7.

For clarity, χti is the simulation generated by the interval, Ati, in Bt which contained
the sampled λ value, and Kε(d(S(X), S(χti))) is the weighing, kti , attached to that, which
was calculated and recorded in Stage 1.

7.3. Coupled ABC: Examples. To see the effectiveness of the coupled ABC we again
begin with an example of simulated data, before moving on to applying the methodology
to the Abakaliki dataset. This time, however, we cannot take into account any temporal
aspects of the data, so we will be purely looking at the final size data.
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Coupled ABC (cABC) - Stage 2:

Inputs: Data, X; Parameter sets, B; Prior on λ, π(λ); Interval weightings, ki; and Lπ.

5. Sample Q from Q ∈ (1, . . . , T ) with P[Q = t] = |Bt|∑T
k=1 |Bt|

.

6. Sample λ from BQ uniformly.
7. Accept λ as a draw from the approximate posterior distribution for λ with probability

1
Lπ
Kε(d(S(X), S(χti)))π(λ). Otherwise, reject λ.

8. Repeat until there has been U accepted samples.

Algorithm 7. The algorithm presented here is adapted from Neal (2012) [23].

Example 6 (Coupled ABC for simulated data). Let the population consist of N = 200
individuals, and we will begin with m = 1 infected. We generated an outbreak using the
Sellke construction algorithm (Alg. 5) with the parameter value λ = 2. This resulted in
167 infected individuals.

As suggested in §7.2, we will use the final size as our summary statistic, S(·), and
the L2 − norm as our distance function. For the coupled ABC, however, we have an
additional choice to make. We require a kernel function which is used to weight the
different simulations, and thus the different intervals of λ, Ai, based on the distance of
their summary statistics from those of the true data. In this instance we will use a simple
step function, giving a set of λ values, Ai, the weighting of 1 if d(S(X), S(χi)) ≤ ε, and
0 otherwise. Finally we choose our prior on λ to be an Exp(1).

Since the coupled ABC allows us to greatly increase our acceptance rate, and due to
the nature of the algorithm, it is no longer necessary/possible for us to have a pilot run.
Thus, we jump into applying the algorithm with a tolerance that we believe would be
acceptable, ε = 2. Since the summary statistic, S(·), is interpretable in this case, this
tolerance means, in stage 1, we will accept any intervals of λ that result in a final size
between 165 and 169, and in this case, they will all be equally weighted because of our
step function kernel. The coupled ABC took around 79 seconds in total to generate these
10, 000 samples from the approximate posterior distribution for λ. We present the results
of the run in Table 9 below.

E[λ|X] sd(λ|X) Sims: Stage 1 Samples: Stage 2 Acceptance rates Time
2.165 0.254 19,038 25,600 53% and 39% 79 seconds

Table 9. A summary of the cABC results for the simulated data. We are aiming for
λ = 2. The acceptance rates are for stage 1 and stage 2, respectively.

The first thing we notice is that the acceptance rate of the algorithm overall has
dramatically increased, thus drastically reducing our computation time. Our estimate of
the approximate posterior mean is slightly higher than the true value, but well within one
standard deviation. Given that the acceptance rate was so high it may even be justifiable
to make our tolerance even smaller to increase our accuracy. Also bear in mind that we
are working with very little information, only the final size data, and this limits what
inference is possible, even if the data was generated from the model we are using.

�

Example 7 (Coupled ABC for Abakaliki data). The Abakaliki data consists of N = 120,
30 of which become infected with smallpox by the end of the epidemic.
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Again, we will use the final size as our summary statistic, S(·), and the L2 − norm as
our distance function. For the kernel function in this instance we will use the discrete
Epanechnikov kernel detailed in §7.2. This will give larger weights to sets of λ values
which result in simulations with final sizes closer to 30. Finally we again choose our prior
on λ to be an Exp(1).

A pilot run would again be inappropriate for this algorithm, so we go straight to
applying the algorithm with a tolerance that we believe would be acceptable, again ε = 2.
In this case, in stage 1, we will accept any set of λ values, Ai, which result in an outbreak
with final size between 28 and 32, with greater weight given to sets closer to 30. The
coupled ABC took around 71 seconds in total to generate these 10, 000 samples from the
approximate posterior distribution for λ. We present the results of the run in Table 10
below.

E[λ|X] sd(λ|X) Sims: Stage 1 Samples: Stage 2 Acceptance rates Time
1.1621 0.30 76,513 73,794 13% and 14% 199 seconds

Table 10. A summary of the cABC results for the simulated data.

The acceptance rates are much lower than for the simulated dataset, but this may be
expected, since we know that the model we chose for the coupled ABC in that case was
the one we used to generate the simulated dataset that we are trying to analyse. It could
also be down to our choice of prior for Stage 2.

Since we are using a model construction which is very different to the chain-binomial, it
is more difficult to compare our results to the previous methods. However, λ in this case
can be interpreted as an estimate of R0, so we can calculate R0 for our ABC estimates in
Example 4 and compare them that way. Our posterior mean and median estimates for R0

using the ABC were 1.0880 and 0.8712 respectively. These are quite a bit lower than the
estimate from our cABC (but still within 1 standard deviation), and the median suggests
an R0 value less than 1, which may be possible but is unlikely. On the other hand, we
calculate R0 = 1.2444 for Bailey & Thomas (1971) [2], which is well within one standard
deviation of our estimate, and seems more likely since R0 > 1. We can also compare our
results to Kypraios et al. (2016) [19], who used a coupled ABC on the same dataset using
a larger tolerance, ε = 10, and returned an estimate of the posterior mean (standard
deviation) of λ to be 1.16 (0.29), which exactly agrees with our estimates. They also ran
an ABC and sequential ABC algorithm (§9) to make direct inference on λ, which both
obtained a posterior mean of 1.16 also.

�

8. Semi-Coupled Approximate Bayesian Computation

Coupled ABC works well when we have one parameter which has some form of natural
ordering, for instance, the larger the parameter, the greater the final size of the epidemic.
Sometimes though, the questions presented by the data require the use of additional
parameters, even when we do not consider a temporal characteristic of the data. It may
not be possible to disentangle all of these parameters from the simulations. In these cases
it often works well to use a mixed approach. We can still take advantage of the coupled
nature of some of the parameters, while drawing the non-coupled parameters from their
prior distribution in the traditional way. This is known as semi-coupled ABC. It works
in much the same way as the coupled ABC, except that the simulation is generated using
random draws from the prior distribution of the non-coupled parameters, and then the
coupled parameter values are chosen to fit the data best.
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In this case, we will begin by going over the data used in this instance, and then explain
how we can build a semi-coupled ABC algorithm for this specific case, before applying
it.

8.1. Setting up the Vaccination data. Recall from §3.3 the outbreak of Measles
in a school in Honkajoki, Finland. There were a total N = 417 individuals in the
population, which were split into 3 sets based on their vaccination history. A student of
type k ∈ (0, 1, 2) had received k doses of Measles vaccination prior to the outbreak. The
data is final size data, with a total 35 students infected, the details of which are given in
Table 1. The model presented in this section is adapted from Neal (2018) [22].

We wish to infer the infection parameter, λ, as well as an individual of type k’s prob-
ability of being infected if contacted by any infectious individual, q0, q1, q2 ∈ [0, 1]. Since
we only have final size data, there is not enough information to infer how the vaccine
affects both the infectivity and susceptibility of an individual, so following Neal (2018) [22]

we will assume the vaccine has no affect on infectivity. Thus qk can be thought of as the
protective effect of having had k measles vaccinations. We will also assume, as Neal did,
that being unvaccinated conferred no protective benefit, so we set q0 = 1.

We will use a Sellke construction (§7.1) for the basis of the model, but also introduce
new elements which take into account the protective effect of the vaccines, q0, q1, q2. We
know that 35 individuals were infected, and we also know how many of each type of
student were infected, and we would ideally want our simulations to match that. To
do this, we select values for q1 and q2, and generate a random infection order for all the
individuals in the population, based on q0, q1, and q2. We then look at the first 35 infected
individuals, as they are all we are interested in, and if the number of each type of student
matches that of the data, then we accept the infection order, otherwise we discard it and
generate a new one until we have one that matches.

Now that we have our infection order, for j ∈ (0, 1, 2), let sj,i denote the total number
of susceptible individuals of type j after the ith infection. We use the convention that
sj,0 = nj, the total number of individuals of each type. Note that s depends on the
infection order, which we will call ω.

For i ∈ 1, 2, . . . , let αi = 1
N

∑2
j=0 sj,iqj. This is the probability that, following the ith

infection, an infectious contact will result in an infection [22]. This can also be thought
of as the probability that the contact is with a susceptible individual and succeeds in
infecting them. We then generate Li ∼ Exp(αi) for each individual, where Li is the
additional infectious pressure needed after the ith infection for the (i + 1)th infection to
take place [22].

We can now use the identities outlined in §7.1, namely Eq. 3, to calculate the final size
of the epidemic for each interval of λ. The algorithm then proceeds in much the same
way as the 2-stage coupled ABC algorithm. We lay out the algorithm for this case in the
next section.

8.2. Semi-coupled ABC: The algorithm. Stage 1 of the algorithm is presented in
Algorithm 8.

Stage 2 of the algorithm is as in §7.2, but we will reprint it here for ease as Algorithm
9. Let Lπ = max1≤t≤T {supλ∈Bt |π(λ)|}.

Again for clarity, χti is the simulation generated by the interval, Ati, in Bt which con-
tained the sampled λ value, and Kε(d(S(X), S(χti))) is the weighing, kti , attached to that,
which was calculated and recorded in Stage 1.

8.3. Semi-coupled ABC: Example. We will now put the algorithm laid out above
into action for the Measles vaccination dataset. As stated we will use a modified Sellke
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Semi-coupled ABC (scABC) - Stage 1:

Inputs: Data, X; Model, M(θ); Prior on qk, π(q1, q2); Summary statistics for infection or-
der, Sω(·); Summary statistics for epidemic, S(·); Distance function, d(·); Kernel function,
Kε(·); Tolerance for infection order, εω; Tolerance for epidemic, ε.

1. Set λ = 1 and q0 = 1. Draw realisations of q1 and q2 from their prior, π(q1, q2).
2. Using (q0, q1, q2), generate an order of infection for all the susceptible individuals, ω∗.
3. Calculate the summary statistic for the order of infection, Sω(ω∗), the number of each

type of individual in the first 35 infections. Repeat steps 1-3 until d(Sω(X), Sω(ω∗)) ≤
εω.

4. For j ∈ (0, 1, 2) and i ∈ (1, . . . , N), let sj,i denote the total number of susceptible
individuals of type j after the ith infection with sj,0 = nj.

5. Calculate αi = 1
N

∑2
j=0 sj,iqj for all i ∈ (1, . . . , N).

6. Generate Li ∼ Exponential(αi) for all i ∈ (1, . . . , N).
7. Calculate the intervals for λ, using Eq.3, for which M individuals are infected, with
M ∈ (1, . . . , N). Note that there may be less than N intervals, when M infected
individuals implies infecting atleast M + 1.

8. Record the intervals of λ, Ai, which give final sizes for which d(S(X), S(χi)) ≤ ε, as
well as their weighting, ki calculated using the kernel Kε(d(S(X), S(χi))) (details as
in §7.2), and (q1, q2). Call B the union of all the accepted intervals Ai.

9. Repeat steps 1-8 until there have been T accepted simulations (the set B is non-empty).

Algorithm 8. The algorithm presented here is adapted from Neal (2012) [23].

Semi-coupled ABC (scABC) - Stage 2:

Inputs: Data, X; Parameter sets, B; Prior on λ, π(λ); Interval weightings, ki; and Lπ.

10. Sample Q from Q ∈ (1, . . . , T ) with P[Q = t] = |Bt|∑T
k=1 |Bt|

.

11. Sample λ from BQ uniformly.
12. Accept λ as a draw from the approximate posterior distribution for λ with probability

1
Lπ
Kε (d(S(X), S(χti))) π(λ), and record (λ, q1, q2). Otherwise, reject λ.

13. Repeat until there has been U accepted samples.

Algorithm 9. The algorithm presented here is adapted from Neal (2012) [23].

construction, and we will choose Uniform[0, 1] priors for the qk, this allows the possibility
that q1 < q2, meaning that a second vaccination shot has a detrimental effect and increases
an individuals probability of being infected. The summary statistics for infection order,
Sω(·), is as stated in the algorithm, the number of infected individuals of each type in
the first 35 infecteds. We are aiming for (18,11,6) for types (0,1,2) respectively. We set
the tolerance for this, εω = 0 since the infection orders are very easy to generate. The
summary statistics for the epidemic, S(·), is again as stated, the final size of the epidemic,
which is 35 in our data. We set the tolerance of this, ε = 2, meaning we can choose λ
values that infect a little less or a little more than 35 people. For the distance function
for both we will just use the L2− norm, and for the kernel weighting function, Kε(·), we
will use the step function. Finally in stage 2 we will use an Exp(1) prior on λ.
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The algorithm took 987 seconds to run (16.45 minutes), and returned 10, 000 samples
from the approximate posterior for (λ, q1, q2). The results are presented in Table 11.

E[λ|X] sd(λ|X) E[q1|X] sd(q1|X) E[q2|X] sd(q2|X)
2.4152 0.6976 0.3409 0.1300 0.2433 0.1143

Sims: Stage 1 Samples: Stage 2 S1: Acc. rate S2: Acc. rate S1: Time S2: Time
7,298,884 55,526 0.01% 18.00% 976 seconds 11 seconds

Table 11. A summary of the Semi-coupled ABC results for the Measles vaccination
data.

As we can see the acceptance rates are still much higher than we might expect to get
using the basic ABC algorithm, especially with such a small tolerance. The 0.01% accep-
tance rate in stage 1 could be attributed to the fact that a simulation is counted as soon as
an infection order is drawn, and the tolerance on matching those is zero, so a lot of them
will be discarded. However, relative to a full simulation of the data, they take very few
computational resources to generate. We can compare our results to Neal (2018) [22], who
analysed this dataset using a range of ABC and alternative methods, such as MCMC.
We will compare our results to their MCMC results, as MCMC in theory should return
samples from the true posterior. They had a posterior mean (standard deviation) for each
parameter of λ = 2.780(0.691), q1 = 0.303(0.116), and q2 = 0.220(0.098). We see that our
posterior mean estimate for λ is lower, though within one standard deviation, and our
estimates for q1 and q2 are higher. We interpret this as our Semi-coupled ABC inferring
that the disease was less infectious, but that the vaccines were also less effective at pro-
tecting against the disease. Neal’s (2018) [22] basic ABC methods inferred similar results
for q1 and q2, with posterior mean (standard deviation) estimates of λ = 2.851(0.691),
q1 = 0.321(0.116), and q2 = 0.240(0.098). Their λ result being much greater than our
own could be due to their choice of prior. They used an Exp(0.1) as Measles is estimated
to have an R0 value around 10 [13]. Rerunning our own Semi-coupled ABC algorithm with
this same prior, we get estimates much closer to theirs, with posterior mean (standard
deviation) estimates of λ = 2.970(0.890), q1 = 0.291(0.122), and q2 = 0.210(0.101), and
make the opposite inference, with λ now being higher than their MCMC estimates, and
q1 and q2 being lower. This demonstrates the effect that our choice in prior can have,
with the posterior mean of λ increasing by 23% just based on our choice of prior. Another
benefit of using the Semi-coupled ABC is that our prior choice for λ only comes into effect
in stage 2, so to get 10,000 samples using the alternative prior only took 2.45 seconds.

9. Sequential Approximate Bayesian Computation

We have thus far seen that Approximate Bayesian Computation can be extremely in-
efficient if we make “poor” choices when specifying the components of the algorithm. In
particular, the prior distribution we choose for our parameters can greatly affect our ac-
ceptance rate, and our tolerance can greatly affect our accuracy. We have seen that using
the Sellke construction in the Coupled ABC algorithm we can improve the acceptance
rate and not rely so heavily on our choice of prior, however, the Sellke construction is
not useful when our data contains temporal information that we wish to utilise in our
analysis. In this case, one possible alternative is to update our prior, and tolerances,
sequentially as we go through the process. This helps the posterior find its mode quicker,
thus increasing the acceptance rate. This is known as Sequential Approximate Bayesian
Computation. The particular algorithm we will demonstrate is known as Particle Monte
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Carlo Approximate Bayesian Computation (PMC-ABC) [19], which is one of many pos-
sible sequential ABC algorithms possible. During this dissertation we will refer to it as
Sequential-ABC for ease.

The Sequential-ABC algorithm essentially works by running a series of shorter ABC
algorithms, at each step using a stricter tolerance, and a prior based on the accepted draws
of the previous iteration. There are many ways to update the prior and the tolerance, but
in this dissertation we will follow the guidance of Kypraios et al. (2016) [19] and Beaumont
et al. (2009) [3]. In this section we will explain how to implement the Sequential-ABC
algorithm, and then demonstrate its use on the Abakaliki dataset.

9.1. Sequential-ABC: The algorithm. The Sequential-ABC algorithm takes the same
inputs as the basic ABC algorithm; A set of summary statistics, S(·), a distance function,
d(·), and an initial prior, π(θ), but has a sequence of tolerances, (ε1, . . . , εL), and updates
the prior after each iteration. The algorithm is presented in Algorithm 10.

The accepted samples (particles) from the final iteration, L, will be our sample from
the approximate posterior distribution of θ. In the weighting, φ(θ∗|θ, 2Σ) is the density
of a Multivariate Normal distribution with mean θ and variance-covariance matrix 2Σ,
evaluated at θ∗.

9.2. Sequential-ABC: Example.

Example 8 (Sequential-ABC for Abakaliki data). We now apply the Sequential-ABC
algorithm to the Smallpox outbreak in Abakaliki. When compared to our inference using
the ABC, we should be able to get greater accuracy and a higher acceptance rate using
the Sequential-ABC. To ensure the results are comparable we need to maintain the same
model and summary statistics. We will also use the same distance function and prior dis-
tribution. As a reminder, for the summary statistics, S(·), we use the number of recovery
events in a series of time periods, and the time when the final infected individual recovers,
T(I=0). We take the time intervals to be [0, 13], (13, 26], (26, 39], (39, 52], (52, 65], (65, 78], (78,∞].
For the distance we choose:

d(XAbakaliki, χ) =

 7∑
i=1

(bi − bχi )2 +

(
T(I=0) − T χ(I=0)

50

)2


1
2

,

where bi is the observed number of recoveries in time interval i, and T(I=0) is the observed
epidemic duration, for the Abakaliki data. The superscript, χ, denotes similar notions
for the simulated data. The model will generate a random number of initial infected
individuals, as described in §4, and we will use Exp(1) priors on both β and γ.

We do not require a pilot run as we will be using a sequence of tolerances. We should
also be able to have a smaller final tolerance than for the basic ABC, and we can use the
pilot run from our ABC to inform how low that could be. We choose our set of tolerances
to be (12, 10, 8, 6, 5.428, 5, 4.5). We ran the sequential-ABC algorithm to obtain 1000
samples from the approximate posterior distribution for β and γ, the results of which are
presented in Table 12.

E[β|X] sd(β|X) E[γ|X] sd(γ|X) Simulations Acceptance rate Time
0.0010 0.0004 0.1223 0.0483 2,658,935 0.038% 1713 seconds

Table 12. A summary of the ABC results for the Abakaliki data.

The ABC algorithm took 2,658,935 simulations to find the 1000 accepted samples,
and was completed in 1713 seconds (28.55 minutes). Comparing this to the basic ABC



26

Sequential ABC (seqABC):

Inputs: Data, X; Model, M(θ); Prior on θ, π(θ); Summary statistics, S(·); Distance
function, d(·); Tolerances, (ε1, . . . , εL).

1. Let l = 1 and choose an initial prior, π(θ), for the parameters θ.

While l = 1;
2. Draw parameters θ∗ ∼ π(θ).
3. Simulate an epidemic, χ, using parameters θ∗

4. Calculate the summary statistics for χ using S(χ).
5. If d(S(X), S(χ)) ≤ ε1 then accept the draw θ∗, otherwise reject.
6. If θ∗ was accepted, set the weight of θ∗, ω, equal to 1, and record both θ∗ and ω.
7. Repeat steps 2-6 until there have been N accepted samples.
8. Set l = l + 1.

While l ∈ (2, . . . , L);
2. Sample parameters θ′ from the previous iterations accepted samples (particles),
θ(l−1). The probability of choosing any sample (particle), θ′i, is proportional to its

weight, ω
(l−1)
i .

3. Set Σ equal to the empirical weighted variance matrix of the accepted samples (par-
ticles) from the previous iteration, θ(l−1), with weights, ω(l−1). Generate parameters
θ∗ ∼MVN (θ′, 2Σ). Repeat until π(θ∗) > 0.

4. Simulate an epidemic, χ, using parameters θ∗

5. Calculate the summary statistics for χ using S(χ).
6. If d(S(X), S(χ)) ≤ εl then accept the draw θ∗, otherwise reject.
7. If θ∗ was accepted, set the weight of θ∗,

ω ∝ π(θ∗)
∑N

i=1 ω
(l−1)
i∑N

i=1 ω
(l−1)
i φ(θ∗|θ(l−1)i , 2Σ)

,

and record both θ∗ and ω.
8. Repeat steps 2-7 until there have been N accepted samples.
9. Set l = l + 1.

Algorithm 10. The algorithm presented here is adapted from Kypraios et al.
(2016) [19] and Beaumont et al. (2009) [3]. See §9.1 for details on φ(·).

algorithm in §4, we can see that the acceptance rate has increased dramatically from
0.013% to 0.038%, which is almost 3 times as large. The number of simulations required
(and thus the computation time) was also vastly reduced, from 7,685,538 to 2,658,935
(5408 seconds to 1713 seconds), which is a reduction of 65% (68%). On top of this we
also have samples from the approximate posterior with a smaller tolerance, dropping from
5.428 to 4.5, and these are directly comparable tolerances.

As for the estimates, we can first see that our standard deviations are much smaller,
0.0004 compared to 0.002 for β (a decrease of 80%), and 0.0483 compared to 0.33 for γ
(a decrease of 85%), suggesting we are also much more confident in our inference. The
posterior mean estimate for β is half of what the ABC gave (0.001 compared to 0.002)
and the estimate for γ is a third of what the ABC produced (0.1223 compared to 0.368).
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On top of this the approximate posterior for γ is far less skewed than it was from the
ABC, with the median now being 0.11572, compared to 0.2626.

The results are also much closer to the Bailey & Thomas (1971) [2] estimates. Their
mean (standard deviation) estimates were β = 0.00168(0.00047) and γ = 0.162(0.050).
Again we would expect differences since they assumed a different model and used a likeli-
hood based approach to make inference, but we are now within one standard deviation of
their γ estimate, and our own standard deviations are much closer to theirs. One possible
reason for our increased accuracy is our stricter tolerance, which was only really viable
using the Sequential-ABC in this case.

�

10. Sugarcane Yellow Leaf Virus

We have successfully demonstrated that various ABC methods can be successfully
applied to a series of simulated and simple epidemic datasets to provide approximate
inference. As an extension we wish to investigate how effective our various ABC methods
are at making inference on a more complex dataset/epidemic. In this section we give the
details of an outbreak of Yellow Leaf for Sugarcane plants in Guadeloupe, and explain
how we intend to model the temporo-spatial spread of this disease in a field.

10.1. SCYLV: The data. Sugarcane Yellow Leaf Virus (SCYLV) is spread by aphids,
and is especially prevalent in the Caribbean Islands, particularly on Guadeloupe [11]. Yel-
low Leaf can cause severe yield losses, so understanding it is important for Sugarcane
production, which has major cultural and economical implications in Guadeloupe [11].
The dataset comes from one of four distinct trials set up to investigate the spread of the
disease performed by Daugrois et al. (2011) [11].

The study consists of 1742 Sugarcane plants arranged on a lattice. There are 17 rows,
with inter-row spacing of 1.5m, and the plants within each row are 0.5m apart. Most
rows contained 103 plants, with the last row containing 94. The data we have consists
of a series of snapshots of the field at weeks 6, 11, 15, 19, 23, and 30, which contain
information on the position of all the plants in the field, and their infection status. The
trial began with an disease free population at week 0. When a plant is infected with
Yellow Leaf, it does not die, and it cannot recover. The spatial progress of the disease is
presented in a series of plots in Figure 3 and the growth of the infectious population is
presented in Figure 4.

Before progressing to our own analysis, the results of Daugrois et al. (2011) [11] may
be of interest. They found that aphids appeared on plants within the first week (they
were not artificially introduced) and that aphids were present on all plants by week 22.
For the spatial dispersion of SCYLV they found that it had two stages; the first was
random, caused by winged aphids from outside the field in the early stages of plant
growth, before the soil was covered by a leaf canopy. The second stage was non-random,
with a significant neighbourhood effect for plants within 0.5m to 2m, caused by wingless
aphids. They found that disease spread was strongly correlated with aphid dynamics,
that the time of the first arrival was very important to the rate of spread, that cumulative
rainfall in the first few weeks was negatively correlated with aphid dispersion, but that
an aphids per plant metric did not necessarily explain variation in incidence.

We now go on to explain how we intend to model the spread of the disease in this trial,
using a model with both spatial and temporal aspects, before using the model in a series
of ABC methods to make approximate inference in the next section.

10.2. SCYLV: The model. In contrast to all our other datasets thus far, we do not
only know the final size and some information on the temporal spread of the disease, we
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Figure 3. The spatial progress of the disease at (A) Week 6, (B) Week 11, (C) Week
15, (D) Week 19, (E) Week 23, (F) Week 30, in the SCYLV dataset.

also have information on the location of individuals (Sugarcanes) and the spatial spread
of the disease. To improve our inference we will naturally want to include this in our
model. The model presented in this section is adapted from Neal & Xiang (2017) [24].

To model the spatial spread of the disease we use a modified Gillespie algorithm, as de-
tailed in §2.3. Firstly we note that there are only two states in this epidemic, S-susceptible
and I-infected. There is not recovery/removal, so this is an SI epidemic. Given enough
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Figure 4. (A) The growth of the infectious population through time for the SCYLV
dataset. (B) The number of newly infected individuals, ni, at each time point ti, since
the last time point ti−1.

time and no intervention, the whole population of sugar canes will become infected. At
any given time in our simulations, we will know the position of every individual on the
lattice, and who is infected. We make the assumption of a constant underlying rate of
infection, λ, but also non-homogeneous contact between individuals. We assume that
when an individual is infected, they put out infectious pressure on those around them.
This infectious pressure has no affect on other infected individuals, but it increases the
probability that a susceptible individual will become infected. If a susceptible individual
becomes infected, they become immediately infectious, and put out infectious pressure
of their own on those around them. We make the assumption that the force of infection,
F (·), that an infected individual, x, puts on a susceptible, y, is a function of the Euclidean

distance between them,
√

(x− y)2. In our case we take Fα(x, y) = 1√
2πα2

exp
{
− (x−y)2

2α2

}
.

That is, we assume an isotropic Gaussian decay in the force of infection with increasing
Euclidean distance, with the variance given by α2. For a given pair of individuals, x and
y, the distance between them remains constant at all times, in any simulation, so the
force of infection between them is only depends on α in a simulation. Finally we assume
an independent background infectious pressure of λr, with r ∈ [0, 1], which is how we
believe the disease was introduced to the population initially.

Thus if we let the set of locations of infected individuals at time t be denoted by I,
then at time t, the infectious pressure that individual y is subject to is given by,

Ry =λr +
∑
x∈I

λFα(x, y), (5)

=λ

(
r +

∑
x∈I

Fα(x, y)

)
. (6)

We can also look at this as the rate at which individual y becomes infected at time t (as
the rate is non-homogeneous between individuals and non-constant with time). Similarly,
let S denote the set of locations of susceptible individuals at time t. Thus, at time t, the
overall rate of infection is given by,
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A =
∑
y∈S

{
λ

(
r +

∑
x∈I

Fα(x, y)

)}
, (7)

=λ
∑
y∈S

{
r +

∑
x∈I

Fα(x, y)

}
, (8)

=λ

{∑
y∈S

r +
∑
y∈S

∑
x∈I

Fα(x, y)

}
. (9)

Thus, using our Gillespie construction, we assume that the time until the next infection
event, from the current time t, is distributed Exp(A). The probability then, that the
next infected individual is y is,

Ry

A
=

λ
(
r +

∑
x∈I Fα(x, y)

)
λ
{∑

y∈S r +
∑

y∈S
∑

x∈I Fα(x, y)
} , (10)

=
r +

∑
x∈I Fα(x, y)∑

y∈S r +
∑

y∈S
∑

x∈I Fα(x, y)
, (11)

and we can see that this does not depend on λ.
Thus our modified Gillespie algorithm is given in Algorithm 11.

Modified Gillespie algorithm for SCYLV data:

Inputs: Background infection parameter, r; underlying infection parameter, λ; Force of
infection function, Fα(·); Standard deviation of the force of infection, α.

1. Initialise the process by defining the set of locations of initial susceptible individuals,
S, and the set of locations of initial infected individuals, I.

2. Begin at time-step t = 6 with the 6 known initial infected individuals, while I < 700
or t < 35;
(a) Calculate the overall rate of infection, A, given in Eq. 9.
(b) Draw the time until the next event, τ ∼ Exp(A).
(c) For all the susceptible individuals, y, in S, calculate the probabilities that they

are the next infected individual, Ry
A

, as given in Eq. 11.
(d) Using the above set of probabilities, choose which susceptible individual, y, be-

comes infected.
(e) Update the sets S and I to reflect the infection of the new individual.
(f) Set t = t+ τ , and record the i.d. of the newly infected individual and the time, t.

Algorithm 11. The algorithm presented here is adapted from Neal & Xiang
(2017) [24].

The algorithm can return a list of all the individuals in the population and the times at
which they became infected, if they did. We assume the initial infected individuals were
infected at time 0, before the process began. We know that if we let the algorithm run
indefinitely then all the individuals will become infected, but we are aiming for epidemics
with a final size of 584 in 30 weeks. Thus we can stop simulating the epidemic shortly
after these milestones occur, so as not to waste resources, as we will only be interested
in the first 30 weeks or first 584 + ε individuals anyway.
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11. Applying the methods

In this section we apply the ABC, Semi-coupled ABC, and Sequential-ABC algorithms
to the the Sugarcane Yellow Leaf Virus dataset, utilising the model laid out in the previous
section. We cannot use the EBC as we have a very large amount of data and no sufficient
statistics, and we cannot use the Coupled ABC algorithm because we have more than
one parameter, and most of them can’t be decoupled.

11.1. ABC for SCYLV data. We start by applying the basic ABC algorithm to the
Sugar Cane Yellow Leaf Virus (SCYLV) dataset to find samples from the approximate
posterior distribution for (α, r, λ). We will use the model as described above in §10.2.

For our summary statistics there are many considerations. Firstly, as stated this is an
SI epidemic, and will infect the entire population given enough time, so simply looking at
final size will not give us much information. We have temporal data, the details of which
individuals are infected at a series of time points, t0 = 0 < t1 < · · · < tm. This allows us
to match simulations that progress at a similar rate. Similarly to the model, let Ii denote
the set of locations of infected individuals at time point ti, and a similar concept for Si
and the susceptible individuals. Then, following Neal (2017) [24], for i ∈ (1, 2, . . . ,m),
we define Wi = {Ii}\{Ii−1}, to be the set of locations of individuals infected between
time points ti−1 and ti. We also set ni = |Wi|, which we can interpret as the number
of new infected individuals since the last time we looked. We can then take the number
of new infected individuals between each time point, (n1, n2, . . . , nm), as the first of our
summary statistics.

As mentioned, the key benefit of this data is the spatial information it contains. We
wish to use summary statistics that take advantage of this, and match simulations with
similar spatial spread of the disease. To match the specific plants that became infected
and their locations would make the acceptance rate prohibitively small. Instead, we
consider the spatial distribution of the infected individuals, as opposed to their actual
location. For instance, are all the infected individuals on one side of the lattice? If
so, then we would want simulations which also had all of their infected individuals one
side of the field. We would not, however, distinguish between whether they were on the
left half or the right half. Following Neal (2018) [22], we have chosen to use the statistic
Moran’s I [21] to measure the spatial distribution of the infected plants. Moran’s I takes
a value between −1 and 1, −1 representing perfect mixing (imagine a chess board where
infected plants are the black squares and the susceptibles the white), 1 represents perfect
segregation (all the black squares on one side and all the white squares on the other),
and 0 represents perfectly random mixing.

Thus, for this data set, our time points are given by (6, 11, 15, 19, 23, 30), with the
convention that t0 = 0. Our summary statistics are given by

S(·) = (n1, . . . , n6, I1, ..., I6),

= (6, 18, 42, 150, 103, 265,−0.00136, 0.00095, 0.00231, 0.00831, 0.01300, 0.01870)

where Ii is the value of the Moran’s I statistics at time point ti.
We have chosen our distance function, d(·), to be the L2 − norm, with a tolerance for

each type of summary statistic, (εn, εI). We do not have any intuition about the relative
importance of each type of summary statistic, so we will treat them separately instead
of taking a scaled weighted average.

Since r ∈ [0, 1], we choose a Uniform[0, 1]. We initially have no intuition for α, thus
we give it a Uniform[0, 5] prior. Similarly we have no intuition for λ, but we ran a series
of pilot runs of the model with randomly drawn r and α values, and an Exp(30) prior for
λ seemed appropriate. We can think of λ as a speed parameter, that dictates how fast
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the epidemic spreads, and an Exp(1) prior, as would usually be our first choice, resulted
in epidemics that were far too fast, lasting only a few weeks at most before reaching the
desired number of infected individuals.

We ran the ABC algorithm to obtain 250 samples from the approximate posterior
distribution for (α, r, λ). We use the set of tolerances, (50, 0.02). The results are presented
in Table 13.

Sims Acceptance rate Time
92771 0.27% 331748 seconds

E[α|X] sd(α|X) E[r|X] sd(r|X) E[λ|X] sd(λ|X)
2.8929 1.1639 0.4735 0.2227 0.0148 0.0095

Table 13. A summary of the ABC results for the SCYLV data.

The algorithm took 92, 771 simulations to find 250 accepted samples from the approx-
imate posterior distribution for (α, r, λ), taking a total of 331, 748 seconds (around 92
hours). We see from Table 13 that our acceptance rate is rather high, 0.27%, which is
most likely due to our very lax tolerance of 50 on the ni. This tolerance means that in
any given time period there could up to 50 greater, or fewer, infected individuals than in
the data. For instance, in the first time period we are aiming for 18, but would accept
anything between 0 and 68. The severely increased processing time on the other hand is
due to the complexity of the model. For the posterior means of α and r, we notice that
they are very close to the means of their prior distributions. We can see from Figure 5
that they are not completely uniform, and they do have peaks, but as we can also see
from Table 13 their standard deviations are rather large. We would not have much faith
that the algorithm has been able to approximate the posterior well. This may be because
of the very lax tolerance, but it could also be due to the summary statistics.

For λ, we can see from Figure 5 and Table 13 that it has a distinct peak, with a
posterior mean of 0.0148 which is rather different from the prior mean of 0.0333. This
does not mean, however, that we can trust in our inference for λ, as it may have strong
correlation with α and r. Ideally we would want to run the algorithm with a much stricter
tolerance to have more certainty, but the time to run the algorithm for even this many
samples, at such a large tolerance, prohibits greatly what we can do. We next intend
to try other ABC methods that could increase our acceptance rate and/or reduce our
tolerance.
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Figure 5. A histogram of the approximate posterior density for (A) α, (B) r, and
(C) λ, that was produced by the ABC algorithm for the SCYLV dataset.



33

11.2. Semi-coupled ABC for SCYLV data. As we saw in §8, we can improve on
the acceptance rate of the ABC algorithm using the semi-coupled ABC. In the previous
example about Measles with vaccinations, we used a Sellke construction, however, this
is not necessary to be able to use the semi-coupled ABC. We notice that in Eq. 11, the
probability that individual y gets infected next, Ry/A, does not depend on λ, and that in
the overall rate of infection in Eq. 9, λ can come to the front. As we said before, we can
think of λ as a speed parameter, its only effect is to change the duration of the epidemic.
Notice that using the rescaling property,

Exp(A) = Exp

(
λ

{∑
y∈S

r +
∑
y∈S

∑
x∈I

Fα(x, y)

})
D
=

1

λ
Exp

({∑
y∈S

r +
∑
y∈S

∑
x∈I

Fα(x, y)

})
,

(12)

where
D
= implies is equal in distribution, and Exp(A) is the distribution of τ , the time

until the next event. Thus we can separate λ from the simulations by simulating with
λ = 1, and the then choosing the value of λ that ensures the 584th individual is infected
at t = 30.

We use a reduced set of the summary statistics from the ABC in the previous section.
Namely, the number of new infected individuals between each time point (n1, . . . , n6),
and Morans I statistic, though this time we only look at it for the last time point. We do
this under the assumption that if the spatial distribution of infected individuals is similar
at the end of the epidemic, then chances are it won’t be too dissimilar throughout. So our
set of summary statistics is S(·) = (n1, n2, n3, n4, n5, n6, I6). We again use the L2−norm
as our distance function, but this time we will use a separate tolerance for every summary
statistic, (εn1 , . . . , εn6 , εI6). This gives us the ability to allow some time intervals more
lenience, if the algorithm is having trouble finding matches.

We again chose a Uniform[0, 5] prior for α and a Uniform[0, 1] prior for r. As
stated we have decoupled λ and will choose the value that ensures the 584th individual
is infected at t = 30. We ran the Semi-coupled ABC algorithm to obtain 250 samples
from the approximate posterior distribution for (r, α, λ). We used the set of tolerances,
(30, 30, 30, 50, 30, 30, 0.02). The results are presented in Table 14.

Sims Acceptance rate Time
50692 0.49% 379407 seconds

E[α|X] sd(α|X) E[r|X] sd(r|X) E[λ|X] sd(λ|X)
3.0987 1.2444 0.3499 0.1781 0.0173 0.0172

Table 14. A summary of the ABC results for the SCYLV data.

The algorithm took a 50, 692 simulations to find 250 samples from the approximate
posterior distribution, almost doubling the acceptance rate of the ABC. We notice from
Table 14, however, that the algorithm took longer to run, 379, 407 (around 105 hours)
seconds compared to 331, 748 seconds (around 92 hours). This will be because in the ABC
algorithm we could stop the simulation as soon as it diverged too far from the data. In
the Semi-coupled ABC on the other hand, we have to generate the full epidemic in order
to choose the λ value that fits the data best. This would still be better if the inference
were improved. We note that we were able to have a much stricter tolerance, much higher
acceptance rate, and it did not take much extra time, so in those regards this algorithm
is probably still better. As for the estimates, we first see that the posterior means for α
and r are a bit different to their prior means this time, though the standard deviations
are about the same as they were in the ABC. Figure 6 shows that the posterior for r is
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much more peaked, though for α it is still rather uniform. Our estimate for the posterior
mean and standard deviation of λ is similar to what we saw from the ABC algorithm.
In total the results aren’t too different to those from the last algorithm, though this may
not be a positive attribute. Finally, we wish to apply the Sequential-ABC algorithm.
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Figure 6. A histogram of the approximate posterior density for (A) α, (B) r, and
(C) λ, that was produced by the Semi-coupled ABC algorithm for the SCYLV dataset.

11.3. Sequential-ABC for SCYLV data. We saw in §9 that we can improve on both
the acceptance rate and the accuracy of our algorithms by using a Sequential-ABC algo-
rithm. The Sequential-ABC algorithm works by running a series of basic ABC algorithms
with smaller and smaller tolerances, and priors based on the accepted samples of the pre-
vious iteration.

We again use the set of summary statistics S(·) = (n1, n2, n3, n4, n5, n6, I6), where
ni is the number of newly infected individuals at time point ti since time point ti−1,
and I6 is the value of Moran’s I statistic at time point t6. Similarly, for the distance
function, d(·), we again use the L2−norm, with a tolerance for every summary statistic,
(εn1 , . . . , εn6 , εI6), to allow us greater control for matching epidemics.

From a series of pilot simulations, we noted that the Moran’s I statistic is always quite
close to zero, and we have also chosen a tolerance that still excludes a proportion of
simulations, so we do not feel the need to reduce it further from 0.02, and it does not
cause the rejection of so many simualtions as to feel the need to start it larger. Thus we
keep εI6 = 0.02 for all iterations of the Sequential-ABC algorithm, the series of choices
for (εn1 , . . . , εn6) are given in Table 15. We initially choose a Uniform[0, 5] prior for α, a
Uniform[0, 1] prior for r, and an Exp(30) prior of λ.

We initially intended to run the Sequential-ABC algorithm for 7 iterations, with the
last iteration having the tolerance set (20, 20, 20, 50, 20, 20, 0.02). The algorithm ran for
120 hours but was unable to complete before it had to be stopped due to time constraints.
At this point it had generated 80 samples from approximate posterior distribution under
tolerance set 7. Unfortunately these were not recoverable. We estimate it would have
taken around 170 hours more to find the remaining samples. This raises an issue with
the Sequential-ABC, that it is rather difficult to do pilot runs and estimate run times, as
the prior at each stage is dependent on the posterior of the previous.

We ran the Sequential-ABC algorithm to obtain 250 samples from the approximate
posterior distribution for (α, r, λ). The algorithm went through 5 iterations, using a total
of 184339 simulations, which took a total of 118126 seconds (around 33 hours). We
generated 250 samples in each iteration, and use the set from the final iteration as our
samples from the approximate posterior distribution for (α, r, λ), the results of which are
presented in Table 16.

We immediately see from Table 16 that this algorithm requires the greatest number
of simulations so far, double what the ABC required, and almost four times as many
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Iteration εn1 εn2 εn3 εn4 εn5 εn6 εI6
1 100 100 100 100 100 100 0.02
2 80 80 80 80 80 80 0.02
3 70 70 70 70 70 70 0.02
4 60 60 60 60 60 60 0.02
5 40 40 40 60 40 40 0.02

Table 15. The series of tolerances used in the Sequential-ABC algorithm for the
SCYLV data.

Sims Acceptance rate Time
184339 0.14% 118126 seconds

E[α|X] sd(α|X) E[r|X] sd(r|X) E[λ|X] sd(λ|X)
0.8191 0.0993 0.0894 0.0364 0.0575 0.0143

Table 16. A summary of the ABC results for the SCYLV data.

as the Semi-coupled ABC. We also notice that because of this the acceptance rate is
the lowest so far. The stated acceptance rate was calculated using only the accepted
samples from the final iteration as a proportion of the total simulations, as this arguably
is all we are interested in. If, however, we calculated the acceptance rate based on all
accepted samples, then it is around 0.68%, the highest of any of the algorithms. Despite
the much larger number of simulations required, the Sequential-ABC algorithm was the
fastest of the three, taking only a third of the time of the other two to find its samples.
Turning to the approximate posterior, despite having arguably a more lax tolerance than
the Semi-coupled ABC, the Sequential-ABC seems to have done a much better job at
approximating the posterior distribution. The posterior means for α and r no longer
appear to just be distortions of their prior means, and from Figure 7 we can see that
the posterior of α appears to look less uniform, and r has a distinct peak. The standard
deviations of α and r are also dramatically improved. As for λ, its posterior mean is
almost 4 times as large as the previous estimates, but its standard deviation remains
about the same. It must be said, however, that our tolerance is still rather large, so it is
hard to have confidence in our inference at this point.
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Figure 7. A histogram of the approximate posterior density for (A) α, (B) r, and
(C) λ, that was produced by the Sequential-ABC algorithm for the SCYLV dataset.

12. Extensions to our SCYLV investigation

The fact that all three of our algorithms struggled to make inference on the data, even
with such large tolerances, is disconcerting. As we have stated previously, our choices
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can greatly effect the efficiency of the ABC algorithms. We have seen previously how
our choice of prior can greatly affect our accuracy and acceptance rate, but in this case
the most important aspect may be our model. We begin by investigating the data and
showing where our ABC algorithms may be running into issues, from there we detail
some possible alternatives that could be investigated given more time.

We stated originally that our model could affect the efficiency of our ABC algorithms,
but up until this point we have only been using simple datasets, which make our choice
of model, and model assumptions, a less important factor. This dataset however is far
more complex, not just in the type of data it contains, but also in the pattern of the
outbreak. We have assumed in our model, a constant underlying infection rate, λ. This
may not have been appropriate, as we can see in Figure 8 that the number of newly
infected individuals has a sharp spike between weeks 15 and 19, and then goes back down
in the subsequent period, weeks 19 to 23. Since we assumed a homogeneous infection
rate across the whole process, it is our belief that the our model simply cannot reproduce
this pattern. We can see from Figure 8 the progress of all the accepted samples from the
three different algorithms. We note that none of them particularly match the data, but
all try to minimise the distance from it. They do this by having a quicker infection rate
at the beginning, and a slower one at the end. The model simply cannot reproduce the
same spike between weeks 15 and 19. We highlight in Figure 8b, in an emboldened red,
one trajectory that manages to match the data at the beginning of the outbreak and at
the end, but we can see in doing so it cannot match the weeks 15 to 19 interval. In fact
it is a distance of 50 away at that point, the maximum the tolerance will allow.

On the other hand, the models assumption of a homogeneous infection rate may not be
appropriate in the long run, but it may be applicable in short periods. For this reason we
believe it would be beneficial to estimate the parameters and infection rate for each period
independently. This would mean we were now working with final size data which has a
spatial element. This reduces the information we have, which will reduce the amount of
inference we can make, however, we should still be able to adapt the algorithms to make
inference on the parameters we are interested in.

We will run the algorithms for each time period tpi = (ti−1, ti), i ∈ (1, . . . , 6), where
t0 = 0 weeks. Since we no longer have temporal information, we cannot use any summary
statistics relating to the temporal progress of the outbreak, namely, the number of new
infected individuals between time point ti−1 and ti, ni. Running the ABC and seqABC
algorithms for tpi, we can simply use the final size of the outbreak at ti weeks as one of our
summary statistics. Recall, however, that we need at least as many summary statistics
as we have parameters in order to make inference on all of them. Final size data does
not provide us with any other viable summary statistics, so we need other summary
statistics based on the spatial aspects of the data. Any spatial summary statistics should
also help infer α, which the previous algorithms struggles with. We suggest using the
number of infected individuals on each row, for all 17 rows, (c1, c2, . . . , c17). Combined
with the Moran’s I statistic, this should give a good picture of the spatial distribution of
the epidemic. We would have to be careful with the tolerance however, as being too strict
could dramatically reduce the acceptance rate, as there is a lot of information to match.
If this was causing an issue, we could also consider the sum of the differences between the
number of plants in each row in the simulation and those in the data, C =

∑17
i=1 |ci− c

χ
i |.

We could interpret this as how many infected plants are in the wrong row, though note
that assuming our final sizes match, the effect of having a infected plant in row j that
should be in row i so to speak, will increase this metric by 2, not just 1. We suggest that
a good starting point for a tolerance could be aiming for 75% of the infected plants in the
data to be in the right row, plus the tolerance of the final size. This is because, if we need
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Figure 8. (A) The number of newly infected individuals since the last timepoint for
the SCYLV dataset, with the accepted samples from the (B) ABC, (C) Semi-coupled
ABC, (D) Sequential-ABC overlaid.

a final size of 100 say, and our simulation matches perfectly except it has 101 infected
individuals, then that additional 1 infected will increase C by 1 regardless of which row
it is in. For instance, for a final size of 100, a starting point for the tolerance could be
((1 − 0.75) × 100) × 2 + εM . The tolerance can then be adapted from there to attain
the desired acceptance rate. Other summary statistics could include similar notions for
the number of plants in each column, or splitting the field into sectors and counting
the number of plants in each sector. We intended to pursue this line of investigation,
however, unfortunately we did not have the time. We do note however that it would be
much faster to run these algorithms than the previous set.

13. Discussion

Throughout this dissertation we have seen a myriad of ABC methods applied to real
and simulated datasets with at least some degree of success. We have seen that some
of the issues regarding acceptance rates and accuracy for these simple examples can be
alleviated with the use of more advanced methods. This at least shows that ABC methods
will provide use with useful inference in simple cases. It would be foolish, however, to
declare that ABC can be used to make accurate inference of epidemics in general. There
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is a long way to go before ABC should be considered a viable alternative to MCMC and
other such methods.

We have preached throughout this dissertation about the importance of our choices
for the ABC. The efficiency and accuracy of the algorithm can be greatly affected by our
choice of summary statistics, distance function, prior distribution, tolerance, and model.

In §8.3 we saw an example of how our choice of prior distribution could affect our
inference when replacing our Exp(1) prior with an Exp(0.1) prior increased our estimate
of the posterior mean by 23%. Nothing else about the algorithm was changed. In this
case we have no way of knowing which of the results is correct. If ABC were to be used
in practice, and this were a fresh dataset that had never been analysed before, how could
we assess our accuracy when such a simple change drastically changes our inference? In
this case we used MCMC estimates as our benchmark, but in cases where MCMC is a
viable option it is unlikely we would choose the approximate inference of ABC methods.
In §6.2 Ex. 3, we saw the effect that our choice of prior distribution could have on the
acceptance rate, when after the pilot run we changed from our Exp(1) prior for both β
and γ to Exp(2000) and Exp(4) priors, respectively. At the same tolerance as in the pilot
run, our acceptance rate jumped from 0.0009% to 0.23%, which is over 250 times greater.
Now many algorithms are not unfamiliar with the concept of tuning, we would not get
around this particular problem by using MCMC, however, ABC methods come with
additional issues in this regard. In MCMC methods we may wish to tune our parameter
in such a way as to give us a desired acceptance rate, in fact, MCMC methods have
an optimal acceptance rate. This, however, may not be appropriate for ABC methods.
Neal (2018) [22] recommends an acceptance rate of 1%, however, we have seen from results
throughout this dissertation that a 1% acceptance rate would lead to wildly inaccurate
results. But it is not just a matter of choosing a smaller acceptance rate to be our rule of
thumb. If we choose an acceptance rate of 1%, then the samples generated from a prior
which is centred around the true values will be much more representative of the posterior
than an uninformative prior would produce. Thus it is not just the acceptance rate
that depends on the prior, but also the accuracy, which means this method of choosing a
desired acceptance rate is not applicable across ABC methods. To add to these problems,
the tolerance is also a major factor in the acceptance rate and accuracy of the algorithm,
and the two are not independent.

To choose a tolerance, it is often desirable to complete a pilot run to identify acceptance
rates at different tolerances, given our choices. This however is not always a viable
method. For instance, in the coupled-ABC (§7.2) we could not run pilot simulations
since the variable λ was chosen post-hoc to be best match the data. It would also not
have been possible for the SCYLV data (§11) since the model takes so long to simulate
compared to the simple models of the previous sections, that we would not have been able
to run enough simulations to understand what tolerances are appropriate. Even in cases
where we can run pilot studies, if we have no intuition about the parameters, then our
metric for choosing a tolerance must be the acceptance rate. The other issue that arises
is that tolerances, in most cases but the simplest, are not interpretable. They depend on
both the summary statistics and the distance function. Thus a tolerance of 10 can be
large in one algorithm and extremely small in another. This, arguably, is to be expected,
but it means that without extensive data exploration or pilot runs it is very difficult to
choose a tolerance based on intuition. In algorithms such as the Sequential-ABC this is
often a difficult issue, as we should be able to achieve a lower final tolerance, but it is
difficult to tell how low that can be, and how big the jumps should be. For instance,
our Seq-ABC algorithm for the SCYLV data (§11.3) orignially had a smaller tolerance,
but it proved to be too big a jump and meant the algorithm could not complete in its
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maximum allotted run time. There are, however, methods which choose the tolerances
automatically at each stage, which can alleviate this issue to some degree. A common
method by Drovandi & Pettitt (2011) [12] is to choose a tolerance based of the α quantile
of the distances, calculated using the distance function d(·), for the accepted samples
from the previous iteration. In this case α has to be tuned. It is also worth noting that
Kypraios et al. (2016) [19] pointed out that this method can have issues with discrete
summary statistics, in which case minor modifications to the algorithm need to be made.

We did not see any explicit examples in this dissertation of how the choice of sum-
mary statistics can affect the efficiency of the ABC algorithms, however the question still
remains of how do we pick summary statistics in the first place? Most of the summary
statistics used in this paper were either adapted from the previous inference of others,
or chosen based on intuition. These summary statistics may not have been the best
possible however, they may have even been quite poor, but the simplicity of the models
meant that any damaging effect was mitigated. Not only do we have to find summary
statistics that explain the data well, we also cannot have too few, or too many. Having
too many summary statistics not only reduces the acceptance rate, but also allows for
minor discrepancies to be accepted, which distort the approximation of the posterior [28].
Prangle (2015) [28] lays out multiple methods that can be used to select a set of summary
statistics, the general approach being to start with a large set of summary statistics, and
then choose the best subset. They also detail other methods that might be of interest.
Similarly the distance function plays an important role, though less work has been done to
investigate its effect [27]. Prangle (2015∗) [27] talks about common choices for the distance
function, like those we have used in this dissertation, but also point out that these may
not be appropriate for iterative algorithms such as our Sequential-ABC. In this case they
suggest some methods for updating (or tuning) their distance function as the algorithm
iterates.

Finally, the model we choose has a great effect on the quality of our inference. For
the simple examples the assumptions of our models made little difference, even though in
some cases they were inaccurate, such as in Ex. 5 with the Gastroenteritis data, which
is known to have a incubation period of 1-3 days [19]. In the complex case of the SCYLV
data (§10), however, we noted in §11 that the model had a great effect on our inference,
as its assumptions were clearly incorrect since the simulations did not match the data as
seen in Figure 8. This caused the acceptance rate to be extremely low, even using large
tolerances with the more sophisticated algorithms, and for the inference they made to
be somewhat worthless. We would have have similar issues if we specified an incorrect
model using MCMC, but since MCMC gives exact inference, we could be more certain
that it is our model that is at fault.

There are many more considerations that we have not even considered that would affect
the efficiency of ABC algorithms, but what they all amass to is this: How can we trust
that the inference we have made with ABC is correct? ABC methods only approximate
the posterior, if the values look reasonable, there is nothing about the outputs that can
say whether the approximation is good or bad. The tolerance is usually non-interpretable,
so its size cannot be used as a measure of accuracy, apart from knowing the accuracy
increases as the tolerance tends to 0, though not linearly. Whereas, if we were to use
MCMC methods, we know we would be finding draws from the exact posterior distribu-
tion for the parameters of our model, even if they are dependent, and even if the model
has incorrect assumptions.

Before we were to use these methods in practice we would wish to do a much deeper
investigation into the effect that our choices have, and the methods that have been devel-
oped to counteract these. For instance, Beaumont et al. (2002) [4] introduced the method
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of local linear regression, which helps correct the bias that is introduced when taking
the tolerance ε > 0. We would initially wish to do a formal treatment of the effect that
different choices have on our inference, using a series of simulations and real data. For
instance, we would wish to run a large number of ABC algorithms using different prior
distributions to see how they shifted the posterior, and measure the effect on the accep-
tance rate. We would wish to test different summary statistics and distance functions to
attempt to measure the bias that different choices introduced. Then perhaps we could
look into implementing local linear regression to see to what degree it helped alleviate
the issue. For all of these investigations we could also look at a range of tolerances, to
investigate how the acceptance rate and accuracy may develop as the tolerances get closer
to 0. These investigations would obviously not give definitive answers on the efficiency
of ABC in general, but it would give us a much better idea of what it is capable of, and
how robust it actually is. There are many ways of improving the algorithms, and new
methods are being developed regularly, but we have yet to read about any methods that
can inform us of how confident we should be in our approximate inference.
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[15] T Déirdre Hollingsworth. Controlling infectious disease outbreaks: Lessons from
mathematical modelling. Journal of Public Health Policy, 30(3):328–341, Sep 2009.

[16] Thomas House, Joshua V. Ross, and David Sirl. How big is an outbreak likely to
be? methods for epidemic final-size calculation. Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, 469(2150), 2013.

[17] Matt Keeling, Pejman Rohani, and Babak Pourbohloul. Modeling infectious diseases
in humans and animals. 47:864–865, 10 2008.

[18] Margaret Kosmala, Philip Miller, Sam Ferreira, Paul Funston, Dewald Keet, and
Craig Packer. Estimating wildlife disease dynamics in complex systems using an



42

approximate bayesian computation framework. Ecological Applications, 26(1):295–
308.

[19] Theodore Kypraios, Peter Neal, and Dennis Prangle. A tutorial introduction to
bayesian inference for stochastic epidemic models using approximate bayesian com-
putation. Mathematical Biosciences, 287:42 – 53, 2017. 50th Anniversary Issue.

[20] E. S. McBryde, G. Gibson, A. N. Pettitt, Y. Zhang, B. Zhao, and D. L. S. McElwain.
Bayesian modelling of an epidemic of severe acute respiratory syndrome. Bulletin of
Mathematical Biology, 68(4):889–917, May 2006.

[21] P. A. P. Moran. Notes on continuous stochastic phenomena. Biometrika, 37(1/2):17–
23, 1950.

[22] Peter Neal. Approximate Bayesian Computation methods for epidemic models. To
appear in - Handbook of Infectious Disease Data Analysis. Editors: Leonhard Held,
Niel Hens, Phil O’Neill and Jacco Wallinga.

[23] Peter Neal. Efficient likelihood-free bayesian computation for household epidemics.
Statistics and Computing, 22(6):1239–1256, Nov 2012.

[24] Peter Neal and Fei Xiang. Collapsing of non-centred parameterized mcmc algorithms
with applications to epidemic models. Scandinavian Journal of Statistics, 44(1):81–
96.

[25] P. D. ONeill and G. O. Roberts. Bayesian inference for partially observed stochastic
epidemics. Journal of the Royal Statistical Society: Series A (Statistics in Society),
162(1):121–129.

[26] M. Paunio, H. Peltola, M. Valle, I. Davidkin, M. Virtanen, and O. Heinonen. Ex-
plosive school-based measles outbreak: Intense exposure may have resulted in high
risk, even among revaccinees. Amer. J. Epidemiology, 1998.

[27] D. Prangle. Adapting the ABC distance function. ArXiv e-prints, July 2015.
[28] D. Prangle. Summary Statistics in Approximate Bayesian Computation. ArXiv

e-prints, December 2015.
[29] John A. Rice. Mathematical Statistics and Data Analysis. Belmont, CA: Duxbury

Press., third edition, 2006.
[30] Thomas Sellke. On the asymptotic distribution of the size of a stochastic epidemic.

Journal of Applied Probability, 20(2):390–394, 1983.
[31] Norman T.J Bailey. The mathematical theory of infectious diseases and its applica-

tions. 34, 01 1975.
[32] McKinley Trevelyan, Cook Alex R, and Deardon Robert. Inference in epidemic

models without likelihoods. The International Journal of Biostatistics, 5(1):1–40,
2009.

[33] World Health Organisation. Vector-borne diseases: Key facts. http://www.who.

int/en/news-room/fact-sheets/detail/vector-borne-diseases, 2017. [On-
line; accessed 2018-09-01].

14. Appendix

The R code used in this dissertation can be found at https://github.com/BenjamenSimon/
Approximate-Bayesian-Computation-for-Epidemics.
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