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Abstract

There are over 17 million cases of non-specific gastrointestinal infection every year in the
UK, with incidence on the rise, and very low rates of reporting. We wish to investigate the
relationship being the levels of deprivation in lower super output areas (LSOAs) in Southampton
and the number of cases of non-specific GI infections. To do this we will utilise spatial models to
take inferences about risk factors and areas of increased risk. We begin with exploratory analysis,
followed by K-function analysis, intensity estimation, and fitting Poisson generalised additive
models, and we finally we fit both non-spatial and spatial extra Poisson variation models. Our
analysis suggest that the Index of Multiple Deprivation is not a good explanatory variable for
the risk of GI infections, but a subset of its domains may be better. There is, however, still
a lot of unexplained spatial variation present in the models, which suggests there are other
variables which we have not considered which may play a big role in the risk associated with
GI infections. Finally, we suggest some ways in which the models can be improved, including
including more variables that could be risk factors, using individual level data, or adding a
temporal component as well as spatial component.

1. Introduction

Non-specific gastrointestinal infection encompasses any disease that infects the gastrointesti-
nal tract, which includes the oesophagus all the way to rectum, and accessory digestive organs
such as the liver, gall bladder and pancreas [9]. It is estimated that 25% of the UK population
suffer from some form of infectious intestinal disease every year [4] (also known as non-specific

gastrointestinal disease [4] or gastroenteritis [6]). The incidence of infectious intestinal disease is

on the rise, with a 43% increase in 2008-09 when compared with 1993-96 [4]. It was estimated
that for every case of IID presented to national surveillance, there were an additional 147 cases
in the community [4]. Of these more than 17 million annual cases, only 2% visit their GP, which
is a decrease of 50% compared to 1993-96 [4]. Today, this may be partially explained by elements
like NHS Inform Scotland suggesting that individuals do not visit their GP, as the infections are
easily spread, but instead ring the NHS 24 111 service [11]. A comprable system, NHS direct,
now defunct, was in effect in 2008-09, but only accounted for a very small proportion of case
detection [4]. This makes incidence of IIDs and their effects on the community very difficult
to estimate, even though reporting of IID to national statistics by GPs has improved [4]. This
represents a large impact on the UK, with around 50% of cases reporting IID-related absences,
leading to 11 million missed work days and 8 million missed school days [4].

It is well known that for many chronic diseases, and some infectious diseases, socio-economic
circumstances affect risk in individuals [5;13;14]. In fact, poor socio-economic standing can affect
all aspects of health throughout life, for example, in Scotland, individuals born in the most afflu-
ent areas of Glasgow live 10 years longer than those born in the most impoverished areas [15]. For
some infectious diseases, there exists evidence that incidence varies by socio-economic standing,
such as tuberculosis or HIV [12]. For non-specific GI infections, however, the relationship is not
well understood [12]. Some studies suggest that it is in fact higher socio-economic status (SES)

that are related with increased burden [7;10], but also show that these relationships may cease
to exist once one adjusts for recent foreign travel [7], or that they aren’t consistent across all
pathogens [10]. Thus discerning the relationship between all infections that are encapsulated in
“non-specific GI infection” and SES is not a clear task.

Relationships between SES and prevalence of disease are visible whether one measures at the
individual level or deprivation by area, by utilising a deprivation index, such as the Index of
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Multiple Deprivation (IMD) [15]. This is good as data is usually easier to collect and more avail-
able at the area level. The differences in exposures for different levels of deprivation could have
many explanations. Many studies suggest that different pathogens are related with increased
risk in different SES groups, for instance some found that increased SES increases the burden of
infections caused by Campylobacter, E. coli, and Salmonella, but decreases the burden of Liste-
ria [7;10]. There are over 250 possible infectious and non-infectious agents that can contaminate
food [10]. The differences, however, could arise from not adjusting for the correct variables, such
as recent foreign travel [7] as previously mentioned. These variables, however, could to some
degree suggest differences in SES. The differences are supported by the fact that the different
SES groups are asscoaited with the different risk factors for the disease [10]. Another possible
explanation is that different socio-economic groups have different diets and food preparation
hygiene levels, which could affect their exposure [10]. For instance, there is evidence to suggest
that increased SES increases the likelihood that one will consume undercooked/raw food, such
as raw oysters or rare beef, whereas lower SES is associated with insufficiently cooled refrig-
erators [10]. Neither, however, is yet to be associated with increased risk [10]. There are some
variables that have been found to be associated with IID (at least for some organisms), such
as income, higher educational level, home ownership greater than 50% at the community level,
and semi-routine occupations [10].

The differences, though, could also be more down to the metric and tools used to measure
differences in population and incidence. For instance, it was found that different SES metrics
were not consistent in their results, however, deprivation indexes were [10]. There are still issues
with deprevation indices though. For instance, the Index of Multiple Deprivation looks at 37
separate indicators in each Lower Super Output Area (LSOA), and combines them by weighting

each element [8]. Within each area, however, there may be poor areas and richer areas, or
different residential patterns associated with different ethnicitities [5]. It may also miss important
factors such as the feeling of belonging and community [5]. Another important factor could be
reporting bias [10], it was found that, for IID, increased levels of deprivation are associated with
the rate of presentation to primary care [7]. Also that hospitalisations association with SES was
one of the strongest for GI infections, when compared to other conditions [1]. Even once these
relationships are investigated, and the associations determined, some suggest that only a limited
set of interventions are utilised, and it would be better to choose the intervention that best fits
the scenario [13], perhaps based on organism.

In this report we wish to look at spatially aggregated data from the Ascertainment and
Enhancement of Gastrointestinal Infection Surveillance and Statistics (AEGISS) project [3] in
Southampton collected between 1 January 2001 and 31 December 2002. The data contain
information on 1000 cases of non-specific gastrointestinal infection and their locations, as well
as information used in the Index of Multiple Deprivation (IMD) and the IMD score for each
lower super output area (LSOA) in Southampton. The data was collected using the NHS Direct
telephone clinical advice service, now defunct. We also have a set of controls simulated based
on population density in the area. We will begin in §2 by considering simple exploratory data
analysis, plotting the cases and controls in space, and looking at differences in the distribution of
cases for different variables after overlay operations. In §3 we utilise K-function analysis to try
and identify whether there is clustering in the cases and controls, and compare the two. In §4 we
estimate the intensity of the process across the plane and use graphical aids to interpret it, and
compare the results for different methods of bandwidth selection. Following that, in §5 we use
Poisson Generalised Additive Models fit with a subset of variables to identify areas that have
an increased expected number of cases. In particular, we focus on whether the IMD or a subset
of its components are a better indicator of case count per area. Our analysis culminates in §6
by fitting Bayesian non-spatial and spatial extra Poisson variation models, taking into account
associations with neighbouring LSOAs, and we investigate the random effects for evidence of
unexplained differences between the LSOAs. Finally we discuss our findings and take inferences
in §7, as well as considering some ways of improving the analysis in the future.
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2. Exploratory Analysis

The data is available to us at two levels. The first is that of the individual level, which tells
us which individuals are cases and where they are on the plain. The second is an aggregated
level, which contains the deprivation characteristics of each of the 147 LSOAs in Southampton,
their borders and centroid locations, and some additional information like population size.

At the individual level there are 1000 cases and 1000 simulated controls. They do not appear
to be distributed uniformly throughout the plain, as can be seen in Figure 3, however, this is
best left to K-function and intensity estimation. The study covers an area of approximately
4,984,000 square units, which is home to approximately 212,000 people. Each LSOA has a
population between 1,100 and 2,400, with a median around 1500, on average about half of
which are male. The IMD scores of the LSOAs range from around 7 to 57, with a median of
21, but a mean of 24. Every LSOA had atleast one case, with the median being around 7, and
the most in one area being 14.
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Figure 1. (A) A visual representation of the locations of the cases throughout Southampton.
(B) A visual representation of the locations of the controls throughout Southampton.

We can utilise overlay operations to combine the two levels of data, and investigate whether
there are any differences in the distribution of cases and controls for different variables. From
Figure 2 we can see that, in general, there are more cases for higher levels of deprivation. Figure
2a shows that there seem to be more cases than controls in more deprived areas, and Figure 2b
suggests more cases occur when the score of the education domain is higher (so the education
level is lower). Other variables demonstrated similar relationships. All figures, however, also
have a spike to the left of the graphs, suggesting there may also be some relationships with
certain lower levels of deprivation.

3. K-function Analysis

It is important to know whether the cases are clustered in space. To do this we can use
K-function analysis, which for each cases measures the expected number of cases surrounding
it, and is calculated with a range of different radii. We will utilise isotropic edge-correction
methods. If the data comes from a homogeneous Poisson process then we would expect that
Kjj(s) = πs2, where j represents that we are looking at cases surrounding cases, and s is
the radius of the circle surrounding the point. We can see from Figure 3a that the estimated
K-function for the cases deviates greatly from the confidence interval, suggesting the cases
are clustered in space. We would, however, expect the cases to be clustered in space, if the
population they come from is also clustered, for instance, how human populations cluster around
urban areas. Thus, under the null hypothesis, we can say there is no spatial clustering if the
cases and controls are independent samples from the same underlying population at risk, such
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Figure 2. (A) Density plots for the distribution of the cases by Index of Multiple Depri-
vation score. Larger scores represent greater levels of deprivation. (B) Density plots for the
distribution of the cases by the lack of attainment and skills in the area.

that Kii(s) = Kjj(s), where i is controls and j is cases. Hence, we can consider the difference
between the two, D(s) = Kii(s)−Kjj(s), and look at whether it is significantly different from
0. We can see from Figure 3b that, for the most part, D(s) is within the confidence bounds,
meaning that there is probably no spacial clustering in the case process.
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Figure 3. (A) A plot of the K-function for a range of radii checking for clustering among the
cases, with a 95% confidence bound. (B) A plot of the difference between the K-functions for
the cases and controls at a range of radii, checking for spatial clustering in the case process,
with a 95% confidence bound.

4. Intensity Estimation

It can also be useful to estimate the intensity of the process across the plain. This can help
identify areas where more cases are occurring, which could give an insight into the risk fac-
tors associated with the disease. Intensity estimation (or density ratios) uses kernel smoothing
methods to estimate the spatial variation in risk. The level of smoothing depends on a param-
eter, h, which dictates the bandwidth. Figure 4a suggests two areas where there is, relatively, a
much greater risk of being a case as opposed to a control, one in the south-east and one in the
north-west. For this estimate the value of h was chosen by default using a simple rule of thumb,
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and had a value of h = 1054.44. We can, however, choose the bandwidth using cross-validation
methods, to use a bandwidth which best matches the data. One option is to use a method
proposed by Diggle, with a calculated bandwidth of h = 103.17. It does not suggest any strong
evidence for spatial variation in risk (plot omitted). An alternate cross validation method is
used in Figure 4b, with a calculated bandwidth of h = 169.95. This plot also suggests some
spatial variation in risk, with areas in the south-east and north-west again, and also maybe in
the north-east.
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Figure 4. (A) An estimate of the intensity of the process using a rule of thumb bandwidth.
(B) An estimate of the intensity of the process using an alternative cross validation method
to calculate the bandwidth.

5. Generalised Addative Models

While intensity estimation is useful to try and identify areas of increased risk, it does little
more. An alternative method we can use to estimate spatial variation in risk is the Generalised
Additive Model (GAM). GAMs are an extension to the traditional generalised linear model that
allows the relationship between the response variable and covariates to be estimated as part of
the model-fitting procedure. The general form of the model for Poisson regression is such that:

ln(µi) = u(xi)
′β + g(xi), (1)

where µi is the expected number of cases in the ith LSOA, u(xi) is a vector of covariates for the
ith LSOA, β is a vector coefficients, and g(xi) is a function that models smooth residual spatial
variation.

We begin by fitting a Poisson GAM to model the number of cases in each LSOA. The data
contains covariates for the score of the IMD and the respective scores of the domains that
contribute to it, as well as some basic population counts. We begin by fitting a model with only
the spatial variation term, offset by population size in each LSOA, of the form:

ln(µi) = log(popi) + β0 + s(xcoordi, ycoordi), (2)

where popi is the population size in the ith LSOA, β0 is the coefficient estimate of the intercept,
and xcoordi and ycoordi are the coordinates of the centroid of the ith LSOA. Figure 5a shows
the fitted residual surface for this model, we can see that there is a lot of unexplained spatial
variation. Next we can try adding the Index of Multiple Deprivation score of each LSOA as a
covariate, and see if it can explain some of the spatial variation. The model has the form:

ln(µi) = log(popi) + β0 + β1UIMD,i + s(xcoordi, ycoordi), (3)

where popi is the population size in the ith LSOA, β0 is the coefficient estimate of the intercept,
β1 is the coefficient estimate of the IMD score for each LSOA, UIMD,i, and xcoordi and ycoordi
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are the coordinates of the centroid of the ith LSOA. The coefficient for IMD is not statistically
significant at the 5% level (p-value = 0.086), and we can see from Figure 5b that it does not
explain much of the excess spatial variation when compared with Figure 5a.

Instead, we can investigate whether breaking the IMD into its components and allowing each
one to have its own coefficient allows us to explain more of the spatial variation in risk. We fit
a model with the form:

ln(µi) = log(popi) + β0 + β1UIncome,i + β2UEmployment,i + β3UHealth,i + β4UEducation,i

+ β5UBarriers,i + β6UCrime,i + β7UEnivironment,i + s(xcoordi, ycoordi),

where popi is the population size in the ith LSOA, the β’s are the coefficient estimates, the U•,i
are the covariate values for the ith LSOA, and xcoordi and ycoordi are the coordinates of the
centroid of the ith LSOA. In this model only employment is statistically significant at the 5%
level (p-value = 0.004), but from Figure 5c we can see that there is still a lot of unexplained
spatial variation. We always strive for the most parsimonious model, so we will utilise backwards
elimination to select a subset of the variables. This results in a model of the following form:

ln(µi) = log(popi) + β0 + β1UEmployment,i + β2UEducation,i + s(xcoordi, ycoordi), (4)

where popi is the population size in the ith LSOA, the β’s are the coefficient estimates, the
U•,i are the covariate values for the ith LSOA, and xcoordi and ycoordi are the coordinates of

the centroid of the ith LSOA. In this model both Employment and Education are statistically
significant at the 5% level (p-values = 0.0005 and 0.035 respectively), but from Figure 5d we
can see that there is still a lot of unexplained spatial variation. Using the AIC we can compare
the models, and we see that the final model fits the data the best, but the plot of the fitted
residual surface shows there is a lot of unexplained spatial variation, meaning there is most
likely other variables that we have not adjusted for that contribute heavily to the risk.

6. Bayesian Models

There is evidence to suggest that there is some unexplained spatial variation in the model
which we are not accounting for. For instance, we can attempt to fit a generalised linear model
to the count data, however, when we do we find, using a χ2 goodness of fit test, that the
nominal standard errors from the Poisson regression model are too small. The test statistic is
approximately X2 = 173.9 which is around 20% larger than n−p = 144. Thus, there is evidence
to suggest that the data is overdispersed. Now that we know this, a better fitting model would
be an extra Poisson variation model, which takes the general form:

log(Ri) = α+ βxi + Ui + Si, (5)

where α is the intercept, β are the coefficients to the covariate values xi, Ui are mutually inde-
pendent N(0, ν2) random effects without any spatial structure, the Si are spatially correlated
random effects that follow a discrete spatial variation model in which two LSOAs are neigh-
bours if and only if they share a common boundary. The full conditional distributions of LSOA
i depend only on its neighbours, and Si|neighbours ∼ N(mi, vi) where mi is the mean of the
Sj from LSOAs j which are neighbours to LSOA i, and vi = σ2/ni, where ni is the number of
neighbours of LSOA i.

We begin by fitting a non-spatial extra Poisson variation model, our chosen model has the
form:

log(Ri) = log(popi) + α+ β1xEmployment,i + β2xEducation,i + Ui, (6)

where α is the intercept, the β’s are the coefficients of the covariates x•,i, and Ui are mutually
independent random effects without any spatial structure. These models are fit using MCMC
methods, so before we can take any inference from them we need to check that they have
converged and that they are mixing well. From trace and density plots (omitted), all variables
appear to be mixing well, and from Figure 6a we can see that, at lag 5, all estimated parameters
have reasonable ACF values, though the variance parameter governing the variance of the
random effects, τ2, may be a little high, but still within reason given all the others. For this
model, Education was not significant, as its confidence interval crossed 0, but Employment
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Figure 5. (A) Fitted residual surface for GAM with only spatial component. (B) Fitted
residual surface for GAM with IMD as a covariate. (C) Fitted residual surface for GAM with
IMD components as individual covariates. (D) Fitted residual surface for GAM with subset
of IMD components as individual covariates.

was and had a coefficient estimate of 3.75 (1.66, 5.80). We can see from Figure 7a that some
LSOAs have higher random effects than others, so it may be worth fitting a model that also
has spatially correlated random effects.

Our chosen spatial extra Poisson variation model has the form:

log(Ri) = log(popi) + α+ β1xEmployment,i + β2xEducation,i + Ui + Si, (7)

where α is the intercept, the β’s are the coefficients of the covariates x•,i, Ui are mutually
independent random effects without any spatial structure, and Si are the spatially correlated
random effects. All the parameter trace plots seem to be mixing well (omitted), and we can
see from Figure 6b that, at lag 5, the ACF values for the parameters are all reasonable. The
variances for the random components may again be a little high, but over all its reasonable.
Again, under this model Education was marginally non-significant, with a coefficient of -0.005
(-0.0106, 0.0003), but Employment was significant 3.894 (1.6882, 6.1326). From Figure 7b,
however, we can see there is still an area in the south-east which has much higher random
effects than the rest of Southampton. Comparing the two plots in Figure 7 we can see that
adding the spatially correlated random effects explains a lot of the non-spatial random effects
variation, but there is still an area in the south-east that is much higher. Also, looking at the
scales of the plots, we can see that the size of the random effects in the spatial model are much
larger than in the non-spatial model. More formally, we can compare the models using the



8 32102717

Deviance Information Criterion (DIC), the model with the lower DIC is considered to be the
best fitting, most parsimonious, model. The DIC for the non-spatial model is 713.57, and for
the spatial model it is 703.77, so we say that, of the two models, the spatial model explains the
data the best.
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Figure 6. (A) A plot of the lag 5 ACF values for the different parameters fitted in the
independent extra Poisson variation model. The blue triangles are the fixed effects, β, the
black circles are the random effects, φ, and the red cross is the variance parameter governing
the variance of the random effects, τ2. (B) A plot of the lag 5 ACF values for the different
parameters fitted in the spatially-correlated extra Poisson variation model. The blue triangles
are the fixed effects, β, the black circles are the random effects, ψ, which represent both the
spatially and non-spatially random effects, the red cross is the variance parameter governing
the variance of the non-spatial random effects, τ2, and the green plus is the variance parameter
governing the variance of the spatial random effects, σ2.

−0.04

−0.02

0.00

0.02

0.04

(a)

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

(b)

Figure 7. (A) A plot of the random effects for the model with only non-spatially correlated
random effects. (B) A plot of the random effects (combined spatially correlated and indepen-
dent random effects) for the model with both independent and spatially correlated random
effects.

7. Discussion

From all of our analyses it is clear that there exists unexplained spatial variance for the
number of cases of non-specific gastrointestinal infections in each LSOA in Southampton. This
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suggest that there are other variables that need to be adjusted for in our model, such as recent
foreign travel [7]. In particular, Figure 7 shows that the random effects are quite large, especially
once one includes spatially correlated random effects. The Index of Multiple Deprivation seems
to explain a small amount of the variance in the model, but a subset of its components seems
to be slightly better, but even then, it is clear that there are other, more important, factors
that are missing from the model. Ideally, we would communicate our findings to scientists with
knowledge of the subject, confirm that our variable selection is valid and supported scientifically,
and inquire as to whether there are any other known variables that could explain the variation
in risk.

Given the coefficients in our GAM and extra Poisson variation models, it would suggest that
higher levels of deprivation, or rather, higher levels of certain characteristics that contribute to
deprivation, lead to higher risk of non-specific GI infections. For instance, in our chosen extra
Poisson variation model with spatially correlated random errors, Employment had a coefficient
of 3.894 (1.6882, 6.1326), meaning that if an area has a high proportion of its working-age
population involuntarily excluded from the labour market, the number expected number of
cases of non-specific GI infections in that LSOA will increase. This is contradictory to some of
the literature [7;10], but not all [10]. One possibility, however, is that these relationships would be
removed once one adjusts for other risk factors, such as recent foreign travel [7].

In addition to including more informative variables, we could also improve our models by
collecting individual level data, as well as data on real controls, to fit a binary model. We
have used overlay operations to move to the aggregated data to the individual level, but true
individual level data would be better, and we are also basing our analysis on simulated controls
with the same aggregated data. Individual level data, however, can be very difficult to obtain,
and comes with a lot more data protection issues, so it may be difficult to improve the models
in this way. One improvement that would be possible, however, is to incorporate a temporal
aspect into the model, as well as a spatial component, as was done in Diggle et. al (2005) [2].
The data already comes with the date of reports of cases, so this is a possible improvement.

In conclusion we have done some exploratory analysis to suggest some relationships that may
exist between the level of deprivation in Southampton LSOAs and non-specific gastrointestinal
infection, and how risk is distributed across the area. We then fit Poisson generalised additive
models to the aggregated data to try and identify both LSOAs that had increased risk, and
some important variables that played a role. In particular, we found that using a subset of
the domains of the Index of Multiple Deprivation, Education and Employment, explained the
variation better than the IMD score. There was still a lot of unexplained variance however. Due
to this spatial variation, we decided to fit extra Poisson variation models, after discovering that
the standard errors in a Poisson GLM were too small. We fit both non-spatial and spatial extra
Poisson variation models using the variables determined for our GAMs, and using the DIC chose
the spatial model to be better fitting. The spatial model, however, had large random effects,
suggesting that there are other variables that we have not considered. Our models suggest
that higher levels of deprivation are associated with higher counts of non-specific GI infection,
though there is a lot of unexplained variation, and these relationships may be removed once one
adjusts for the correct variables. Finally we suggest some improvements that could be made to
our models, such as using individual level data or a temporal component.
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8. Appendix

1 ### Density Plots ###

2

3 qplot(IMD, data = cvdata, geom = ”density”,

4 fill = flag, alpha = I(0.5) , main = ”Distribution of cases by Deprivation”,

5 xlab = ”IMD”, ylab = ”Density”) + scale fill discrete(name=”Subject”)

6 # Very little difference , slightly more cases than controls at higher IMD

7 # Lower levels of deprivation assocaited with more cases but also more controls

8

9 ### K−function estimation ###

10

11 k1 <− Kest(Cases)

12 r1 <− k1$r # The automatically chosen radii to compute the K−function at

13 kest1 <− k1$iso # The estimate of the Kest function at different radii for isotropic method

14

15 # Comparing clustering in cases and controls:

16 Contrls <− ppp(x = controls[,1], y = controls [,2], window = win)
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17

18 kcontrls <− Kest(Contrls, r = r1)

19 D <− kest1 − kcontrls$iso

20

21 x <− c(Cases$x, Contrls$x)

22 y <− c(Cases$y, Contrls$y)

23 cc <− c(rep(”case”, Cases$n), rep(”control”, Contrls$n)) #stick ’em all together

24

25 for ( i in 1:nsims) {
26 cc <− sample(cc)

27

28 simcases <− ppp(x = x[cc == ”case”], y = y[cc == ”case”],

29 window = win)

30 simcontr <− ppp(x = x[cc == ”control”], y = y[cc == ”control”],

31 window = win)

32 dsim <− Kest(simcases, r = r, correction = ”isotropic”)$iso − Kest(simcontr, r = r, correction = ”

isotropic”)$iso

33 Dsim <− cbind(Dsim, dsim)

34 }
35

36 qts1 <− apply(Dsim, 1, quantile, probs = c(0.025, 0.975))

37

38 plot(NULL, xlab = ”r”, ylab = ”Estimated D function”, xlim = range(r),

39 ylim = range(Dsim))

40 polygon(c(r, rev(r)) , c(qts1 [1, ], rev(qts1 [2, ]) ) , col = ”lightgrey”,

41 border = NA)

42 lines (r , D)

43 abline(h = 0, col = ”red”, lty = ”dashed”)

44

45 ### Intensity Estimation ###

46

47 denCases <− density(Cases, positive = TRUE)

48 # Don’t specify bandwidth, uses simple rule of thumb

49 denCases

50 attr(denCases, ”sigma”)

51

52 plot(denCases, main = ”Estimate of the intensity of process across the window”)

53

54 # Can calculate bandwidth using cross validation methods

55 den3a <− density(Cases, sigma = bw.diggle, positive = TRUE) # Diggle method

56 attr(den3a, ”sigma”) # x2 = Calculated bandwidth # 103.17

57 den3b <− density(Cases, sigma = bw.ppl, positive = TRUE) # People method

58 attr(den3b, ”sigma”) # 169.9483

59

60 plot(den3a, main = ”Estimate of the intensity of process across the window”)

61 plot(den3b, main = ”Estimate of the intensity of process across the window”)

62

63 ### Generalised Additive Model ###

64

65 library (mgcv)

66

67 IndData <− cbind(cvdata, rbind(cbind(x,y), controls))

68 colnames(IndData)[19:20] <− c(”xcoord”, ”ycoord”)

69

70 fit <− gam(flag ˜ s(xcoord, ycoord), data = IndData, family = binomial(link = logit))

71

72 plot(win, main = ”Contour plot of chance of being case as opposed to control”)

73 vis .gam(fit, view = c(”xcoord”, ”ycoord”), n.grid = 100, plot.type = ”contour”,
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74 add = TRUE, type = ”response”, color = ”terrain”,

75 too. far = 0.08)

76 plot(win, add = TRUE)

77 axis(1)

78 axis(2)

79

80 ## Aggregated data, Poisson GAM ##

81

82 fitPoi4 <− gam(count ˜ offset(log(pop)) + Employment

83 + Education + s(xcoord, ycoord), data = LSOAdata, family = poisson(link = ”log”))

84 summary(fitPoi4)

85

86 plot(win, main = ”Contour plot of estimated number of cases”)

87 vis .gam(fitPoi4, view = c(”xcoord”, ”ycoord”), n.grid = 100, plot.type = ”contour”,

88 add = TRUE, type = ”response”, color = ”terrain”,

89 too. far = 0.08)

90 plot(win, add = TRUE)

91 axis(1)

92 axis(2)

93

94 FitPoiAIC <− AIC(fitPoi, fitPoi2, fitPoi3 , fitPoi4 )

95

96 ### Bayesian Model for aggregated data ###

97

98 library (rgdal)

99 library (spdep)

100 library (CARBayes)

101

102 ### Non−spatial extra Poisson variation model ###

103

104 ireg <− S.CARleroux(count ˜ Employment + Education + offset(log(pop)), family = ”poisson”,data =

shamp@data, burnin = 100000, n.sample = 1000000, fix.rho = TRUE, rho = 0, W = W, thin = 50)

105

106 ## Plotting the random effects

107

108 shamp$U <− apply(ireg$samples$phi, 2, mean)

109 spplot(shamp, ”U”)

110

111 # The areas to the south east and north east boarders seem to have higher random effects compared with

those elsewhere. It might be sensible to fit a model that uses spatially correlated random effects.

112

113 ### Spatial extra−Poisson variation model ###

114

115 # we are aiming to pass the neighbour information into our model that includes a spatially correlated

random effect.

116

117 sreg <− S.CARbym(count ˜ Employment + Education + offset(log(pop)), family = ”poisson”, data =

shamp@data, W = W, burnin = 100000, n.sample = 1000000, thin = 50)

118

119 shamp$Uspat <− apply(sreg$samples$psi, 2, mean)

120 spplot(shamp, ”Uspat”)

121 # The areas to the south east and north east boarders seem to have far higher random effects compared with

those elsewhere, and is much more concentrated that in the model with just Ui

122

123 ireg # DIC = 713.5744

124 sreg # DIC = 703.7657

125 # So the model with spatially correlated random effects is the preferred model.
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